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Sect.1. Complex Numbers and Some Basic Algebraic Manipulations

Different from real numbers, in the complex number theory, we have a number artificially introduced to

2:

make the algebraic equation x —1 solvable. This number is denoted by i, which is a pure imaginary number.

In other words 4 is a number which satisfies i2 = —1. With the notation i, we can define a complex number as

follows
a+ bi,

where a and b are all real numbers. Conventionally a is called real part of a + bi, while b is called the imaginary

part of a + bi. We can also collect all complex numbers together and define

C= {a + bi : a and b are real numbers}.
The set C will be referred as complex field later on. In the complex field, all numbers with zero imaginary part
are called real numbers, while all numbers with zero real part are called pure imaginary number.

Comparison between two complex numbers For two real numbers a and b, there are three relationships
that may happen. They are a < b, a = b or a > b. For complex numbers z; and z2, we do not have z; < 25 or

z1 > 29 generally. But we can define z; = z5.

Definition 1.1. Suppose that z1 = a1 + b14, 22 = as + bai, where a1, as, by, by are four real numbers. Then we

call zy = 29 if and only if a1 = as and by = bs.

Basically two complex numbers equal to each other if and only if their real parts and imaginary parts equal

to each other, respectively.

Addition Two complex numbers can be added together.

Definition 1.2. Suppose that z1 = a1 + b1i and zo = as + bai. Then we define z1 + z5 to be a complex number

as follows:
z21+ 29 = (a1 + a2) + (b1 + bg)l

In terms of properties in real numbers, we also have
(i). Commutative Law: 2z, + 2o = 22 + 21;
(ii). Associative Law: 21 + (22 + 23) = (21 + 22) + 23.
Here z1, z9 and z3 are three arbitrary complex numbers. Also we have a particular number 0 + 0¢, simply

denoted by 0, so that
z+0=z
Any complex number added by 0 equals to itself. With the number 0, we can define summation inverse.

Definition 1.3. Suppose that z is a complex number. Then the summation inverse, denoted by —z, of z is a

complex number so that

z-l—(—z):().



Let z = a+ bi and let —z = ¢+ di, where a, b, ¢ and d are all real numbers. Then by the Definition 1.3 and

the definition of addition, we must have
z+(—2z)=(a+c)+ (b+d)i=0.

Using Definition 1.1 then yields a + ¢ = 0 and b+ d = 0. That is ¢ = —a and d = —b. In other words if
z = a + bi, then its addition inverse is read as —a + ( - b)i. Formally we take —1 in front as a common factor.
The addition inverse is then read as —(a + bi) = —z. This is the origin of the notation —z. With the concept

of addition inverse, subtraction can also be introduced

Definition 1.4 (Subtraction of two complex numbers). Suppose that z1 = a; + byi and 29 = as + boi. Then

we define

21 — 29 =21+ (—Zg) = (a1 —ag) + (bl—bg)i.

Product Two complex numbers can be multiplied. Formally we can apply the distributive law that we have
learned before. If z; = a + bi and 2o = ¢ + di, then formally if the distributive law and commutative law hold

for complex numbers, then it should satisfy
2129 = (a+ bi) (c+ di) = ac + adi + bei + bdi®.

The last term in the above has i2. But as we know i is introduced so that i2 = —1. Then we can rewrite the

above equality as follows
2129 = (a + bi) (c + di) = ac + adi + bci — bd = (ac — bd) + (ad + bc)i.

If distributive law and commutative law for real numbers still hold for complex numbers, then the most-right-

hand side above is the only number that we can have. Motivated by this consideration, we define

Definition 1.5.
2129 = (ac — bd) + (ad + bc)i,
if z1 = a+bi and zo = c + di.

With this definition, we can easily show
n
n — .
(z1 + 22) = Z C’fj zf 2y k, z1 and z9 are complex numbers, n is a natural number.
k=0

This formulae is the so-called binomial formulae. One can also show

(i). Commutative Law: 2129 = 2021;

(ii). Associative Law: (21z2)23 =z (2223);

(iii). Distributive Law: 2y (22 + 23) = 2129 + 2123.

Here z1, z9 and z3 are three arbitrary complex numbers. Also we have a particular number 1 + 0¢, simply
denoted by 1, so that any complex number multiplied by 1 equals to itself. With the number 1, we can define

product inverse.

1

Definition 1.6. Suppose that z is a complex number. Then the product inverse, denoted by —, of z is a complex
z

number so that

z—=1.
z

1
= s also denoted by z~1

z

sometimes in the future.



How to compute z~! ? Suppose z = a + bi and z~! = ¢ + di. By Definition 1.6, it must hold
2zt = (ac— bd) + (ad + bc)i =1.

Compare real parts and imaginary parts. ¢ and d are solutions to the following linear equation:

ac—>bd=1;
(1.1)
bc+ad=0.

This system has a unique solution if and only if

—b
det(a’ >=a2+b27ﬁ0.
b, a

Therefore we know z~! cannot be defined if z = 0. Moreover if z = a + bi # 0, then (1.1) yields

_a d b
Ca? + 0% a2+ b
Equivalently
1 b
P if z=a+ bi.

— i
z  a2+b?  a2+4+b27
With the product inverse, we can also define division. Given z; and 2o where zo # 0, we let

z1 1
— =Z1—.
22 22

So far we have talked about some algebraic manipulations of complex numbers. Now we take a look at one
of its applications.
Euler’s Formulae For real numbers, we have definition of e*. Can we define e* when z is a complex number

? For the real case, exponential function satisfies
"t = e"eY. (1.2)

We hope this property still holds for complex numbers. Therefore if z = a + b and (1.2) holds for complex

numbers, then
eF = ea+bi — eaebi (13)

Here @ and b are real numbers. Notice that e is now well-defined. But e’® still has no definition so far. To
define e®” where b is a real number, we need to recall the second property of the exponential function in the real

case. In fact e” when z is real admits a Taylor expansion. That is for any =z,

0
e’ = E —
= n!

If the above expansion holds for complex number, particularly for the pure imaginary number, then we must

have




Since 4" = 1, 47+l =4, §4n+2 = 1 43 = 4 the last equality formally can be reduced to

b4k 4k b4k+1l4k+1 b4k+224k+2 b4k+324k+3
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= = (4k)! = (4k + 1)! = (4k + 2)! = (4k + 3)!
B i i b4k+1 i b4k+2 Z i b4k+3
k:O = (4k + 1)! k:O (4k + 2)! = (4k + 3)!

We now combine real parts and imaginary parts above together. It then follows

bi 0 0 b4k+2 0 b4k+1 0 b4k+3
i _ i 1.4
¢ kZ Z @hr2) 2, @k + 1) -2 (k1 3)! (14)

k=0 k:O

For the real part above, it holds

0 b4k+2 n

0 0
2n
X S - S e

The right-hand side is the Taylor expansion of cosb. Then we get

© D k2 © n
b (=D" >
Z b*" = cosb. (1.5)
= = (4k +2)! = (2n)!
Similarly
0 4k+1 © 4k+3 © n
b b =™ , .
Z Z b>" 1 = sinb. (1.6)
A @k A @kl A 2t )
Applying (1.5)-(1.6) to (1.4) yields
e’ = cosb + i sinb. (1.7)

This formulae is the famous Euler’s formulae. One should pay attention that, the above calculations are formally
true. Formally means we assume (1.3) and the Taylor expansion of e¢* holds in the complex scenario. Now we

use (1.7) and (1.3) to define the complex exponential function. That is
Definition 1.7. For any real numbers a and b, we let
eF = el = %l 1= % (cosb + isinb).
With the Definition 1.7, we easily have
Proposition 1.8.
e1te = eFleR2 for any two complex numbers z; and zs.

Moreover we also have the complex version of Taylor expansion of e*. That is
Z z
= n!
We won’t prove this expansion here. It will be rigorously shown later on, based on the Definition 1.7.

Sect.2. Geometric Representation of Complex Number Field.

Now we turn to the geometric representation of a complex number. Basically a complex number can be

determined if we have its real and imaginary parts. In other words a complex number can be identified with a



point in R? space. In fact we construct the following correspondence. For a complex number, denoted by a + b1,
we relate it to the point (a,b) in R2. The first coordinate of (a,b) is the real part of a + bi, while the second
coordinate of (a,b) is the imaginary part of a + bi. By this way we obtain a one-one correspondence between
C and R?. We can visualize a complex number geometrically. More than this, all the algebraic manipulations

introduced in Sect.1l can also be explained in a geometric way.

Addition Given z; and 2z, two complex numbers, their corresponding points in R? are also denoted by z; and
z5. Then by using 0, z; and 2, we can construct a parallelogram in R?. 0z; and 0z are two edges of the
parallelogram. Clearly the fourth vertex in the parallelogram (different from 0, z; and z3) corresponds to the

complex number zy + 29;

Subtraction Given z; and z; two complex numbers, their corresponding points in R? are also denoted by z;
and z9. —z9 is the point symmetric to zo with respect to the origin. Using 0, —z, and z;, we can construct
a parallelogram. Then the fourth vertex on this parallelogram (different from 0, —z3, z1) denotes the complex

number z; — z3. Pay attention z; — z5 denotes the vector starting from z; and ending at z;.

As we know, in R? space, besides the Euclidean coordinate, we can also represent a point in R? by polar
coordinate. Suppose that (p, #) is the polar coordinate of the point (x,y) in R%. Then the Euclidean coordinates
for point (x,y), (represented in terms of (p,d)), can be computed by

(z,y) = (p cos 6, psin 9) .
Using the correspondence between C and R?, we know that
zi=x+yi=pcosf +ipsinf = p(cos@ +1 sinG).
Now we apply the Euler’s formulae to get

pcosf +ipsinf = p(cos@ +1 sin0> — pe'?.

Therefore the above two equalities yield
z:x+iy:pew.

The last term above is called polar representation of the complex number x + iy. In the polar coordinate, p is

the distance between (z,y) and the origin. It is uniquely determined and equals to
p =12+ 92

In the theory of complex numbers, for a given complex number z = = + yi, we denote by |z| the quantity p. |z |
is referred as modulus of z in the following course. 6 in the polar representation of a complex number z = x + yi
is the angle between the vector (z,y) and the positive direction of the z-axis. Obviously if we don’t restrict
the range of 6, the angular variable for a vector (z,y) takes multiple values. In fact cos and sin are periodic
functions with period 27. If (p, ) is a polar coordinate of a point (z,y), then (p, 0 + 2k7) represent the same
point (x,y). Here k is any integer number. In complex theory, 6 in the polar coordinate of (z,y) is called

argument of the complex number z + iy.

Remark 1.9. If we restrict 0 to be a number in (—m, 7], then the argument for a complex number can be
uniquely determined. But generally argument corresponding to a complexr number is multiple. Two arguments

for an associated complex number are different from each other by 2kw, where k is an integer. In the future, we



call the argument of z in the interval (—m, 7] the principal argument and denote it by Arg(z). Given a complex

number z # 0, arg(z) is the notation for the following set
arg(z) := {Arg(z) +2km: k is an integer}.
The modulus of a complex number z satisfies the following triangle inequality
Proposition 1.10. For any complex numbers z1 and za, it holds
|21 4+ 22| < |21] + |22]-

Proof. Given z; and z, we can construct a triangle with vertices 0, z; and z; + 2. The distance between 0
and 21 + zo is bounded by the summation of the lengths of the remaining two edges in the triangle. The proof

then follows easily. O
Using inductive arguments, we also have
Proposition 1.11. Suppose that z1 , ..., z, are n complex numbers, then it holds
|21 + oo 4+ 20| < 21| + o+ |20

In the following, let us take a look at geometric meaning of multiplication. Suppose z = pe¥ and zy = poe’®.

Here (,07 9) and (po7 90) are polar coordinates of z and zy, respectively. Then by Proposition 1.8, it holds
zz0 = ppoei(9+9°). (1.8)
Notice that the modulus of zzg equals ppy. This shows
|220| = ppo = ||| 20].
The argument of zzy equals to
{9 + 6y + 2k : k is an integer } (1.9)

Remark 1.12. Usually we have
arg(zz) = arg(z) + arg(zo).
This notation is meaningful in the sense of set addition. More precisely the left-hand side of the above equality

is given by (1.9). The right-hand side of the above equality is understood as
{x +y:xe€arg(z),y € arg(zo)}.
But generally the equality
Arg(zz0) = Arg(z) + Arg(zo0)

is false. For example, z = —1 and zg = i. Clearly Arg(zzo) = Arg( — z) = —g. However Arg(—1) = m, while
31
5

Now we go back to (1.8) and understand more clearly the geometric meaning of complex product. If pg = 1,

Arg(i) = g It then follows Arg(—1) + Arg(i) =

then the modulus of zzy equals to the modulus of z. If pg > 1, then the modulus of zz; is longer than the
modulus of z. It is stretched. If 0 < py < 1, then the modulus of zz; is shortened. As for the argument of

zzg, if 8p = 0, then the argument keeps to be . The direction of zzg and z are the same. If 3 > 0, then



the argument of zzy equals to 8 + 6y. In this case we need rotate the direction of z counterclockwisely by 6y
so that the rotated vector can have the same direction as zzy. If 8y < 0, then the argument of zzy equals to
0 — ( - 90). In this case we need rotate the direction of z clockwisely by |fg| = —6 so that the rotated vector
can have the same direction as zzg. In summary, if we multiply a complex number z by a positive number,
then it corresponds to stretch or compress the vector z. But meanwhile the direction is fixed. If we multiply
a complex z by a complex number e, then it corresponds to rotate z by the angle |#| counter-clockwisely (if
6 > 0) or clockwisely (if 8 < 0). Meanwhile the length is fixed. Multiplying z by a general complex number z
correspond to a composed operation of both stretching and rotation.

With the properties introduced above, we consider

Example Using triangle inequality to estimate 3 + z + 22 for all z with modulus 2.

Solution. By triangle inequality, it holds
13+ 2+ 2%| <3+ 2| +[2°].
Since | 22| = | z|? and | 2| = 2, the above estimate is reduced to
|34+ 2+2%| <3+ 2|+ |22 =34z + ]z =9.

Sect.3 Some Basic Geometric Objects Represented In Complex Theory.

Using the quantities in Sect.2, we can represent some geometric objects in complex theory.

Example 1. A circle with center zy and radius rg is given by {z eC:lz— 2zl = ro}.

Example 2. Interior part of the circle given in Example 1 is the set {z eC:lz—2z < ro}.

Example 3. Exterior part of the circle given in Example 1 is the set {z eC:lz— 2l > ro}.

Example 4. Ellipsis with foci z; and 25 is given by {z eC:lz—z1|+ |z — 2| = d}. Here d is the length of
the long axis.

Example 5. Lines in C. Given z; and z3 two complex numbers in C, they decide a straight line [ so that [

passes across z1 and zy. For all points on [, denoted by z, the direction from z; to zo and the direction from z;

to z are either the same or differ by 7. Therefore by polar coordinates, if zo — z; = pe', then it must hold
2 — 2z, = re'? or Z—2 = rei(“”).

Here p and r are modulus of z, — z; and z — 21, respectively. Therefore we have

. zZ— 2 T z—2z1 r
either = — or = ——.
22—z P Z2 — 21 P

In cither case, the argument of (z — z1) /(22 — 21) is 0, provided that z lies on the line I. The converse is also

true. So in the complex theory, line [ determined by z; and 25 can be represented by

{zeC:im (ZZQ_Z) —o}. (1.10)

Example 6. In Example 1, we have given an analytic way to represent a circle. In complex theory, we have a
second way to represent a circle. As we know a circle can be uniquely determined if we are given three points
which are not on the same line. Suppose that the circle C; is the circle passing across z1, 2o and z3. Here 21,
z2 and z3 are three points on Cy and they are clockwisely distributed. Suppose that z is another point on Cj.
Without loss of generality we assume z lies on C; so that 21, 29, 23 and z are clockwisely distributed. Other

cases can be similarly considered. Then by fundamental geometry, it holds

Lz12329 = L212%.



The reason is that these two angles correspond to the same arc on the circle ;. Notice that we can rotate the
vector zz — zo counterclockwisely by the angle /272329, the resulted vector must have the same direction as

z3 — z1. Therefore we have

’iLZl 2322
)

23 —R1 = )\1 (2,’3 — 2’2)6 for some )\1 > 0.

Similarly we have

1421222
e b)

zZ—21 = Ay (z - 2’2) for some Ay > 0.

Here A\ and A are positive real numbers. Since /212329 = Z2z1229, the last two equalities yield

(=2)/(2=2)-2
m|(=2)/(2=2)] e

One can apply similar arguments above for the other possible positions of z on C;. The last equality always

This furthermore implies

hold once z is on (. Therefore we conclude that

Cl—{ze@:lm[(iii)/(zjiz)]—O}. (1.11)

After Examples 5 and 6, we take a look at some more examples on their application.

Example 7. Find all points which satisfy

The condition given in this example is quite similar to (1.10). It is a particular case of (1.10) when we have
—Zl=1—3i, 22—21=4—i.

Equivalently it holds z; = —1 + 3¢, zo = 3 + 2i. By the discussion in Example 5, the points in this example

represent a line passing across —1 + 3¢ and 3 + 21.

Example 8. Find all points which satisfy

Notice that

Therefore

1 1 .
O=Im<—i>=lm< ZZ)=1m<Z+Z-(—i)).
z z z
Compare with (1.11), we have in this example

—2 =14, 2z =0, S22



. It represents a circle passing across these three points.

N | .

Equivalently it holds z; = —i, 20 = 0, 23 =

Analytically all points in this example satisfy

1
5"

+i
z — | =
2

Example 9. Side of a line. Given different z; and z3 in C, we can determine a line. There are two directions
if a line is given. One direction is from z; to z5, while another direction is from z5 to z;. The concept of side is
related to the direction that we are using. If we fix a direction by starting from z; to zo, then all points on the
left form the left-side of the line [, while all points on the right form the right-side of the line [. Pay attention:
Left and Right sides depend on the direction that we are using. Suppose the direction is given by starting from
z1 to z2. Then for an arbitrary point z on the left-side, we can rotate zo — z; counter-clockwisely by an angle 6,

to the direction given by z — z;. Since z is on the left-side, this 6y can be in the interval (0, 7). In other words,
2 — 21 = Mzg — 21)e'%, for some A > 0 and 6 € (0, 7).

From the above equality we have

Im(z_zl>—>\sin90>0.

zZ9 — 21

Similarly if z is on the right-side of [ with the direction given by pointing from z; to z2, then it holds

Im<2_21><0.
Z9 — 21

The above arguments and (1.10) implies that given z; and z, all points satisfy (1.10) must lie on the line across

Im(z_21>>0,
Z9 — 21

then z lies on the left-side of I. The direction is from z; to z9. If

Im(z_21><0,
Z9 — 21

then z lies on the right-side of . The direction is from z; to zs.

z1 and zo. If

Example 10. Find all points satisfying

z+1—31
m (222" 5. 1.12
m( i >> (1.12)

By example 7, z1 = —1 + 3i, 20 = 3 + 2i. By Example 9, z satisfying (1.12) must be on the left-side. The

left-side is determined by the direction from z; to zs.

Example 11. Symmetric point with respect to z-axis. In complex theory, given a complex number
z = x + 1y, we have an operator to find its symmetric point with respect to z-axis. In fact the symmetric point
of (z,y) with respect to a-axis is (, —y). This symmetric point corresponds to the number z —iy. In the future,
we denote by Z = x — iy the symmetric point and call it conjugate number of z. The following formulaes can

be easily shown

Re(z) = 225, Tm(z) = 22, mm-mm, |#| -2




Example 12. Computation of roots. Given z = pe’?, we can easily calculate 2" = p"e™™?. Conversely if we
are given a = poe’® # 0, we can also find z such that 2" = a. Here n is a natural number. Indeed suppose that

z = pe? | then 2" = a can be equivalently written as

n ind 20
p e’ = poe”

It then follows

p=pyn,  eilno=to) _q
p is uniquely determined. But since cos and sin functions are periodic function, the second equality above can

only imply
nf — 0y = 2k, k is an integer.

Therefore 6 is not uniquely determined. All z with p = pé/ ™ and 6 given by

00 2km

—_ + —_

n n
will satisfy the equation z™ = a. Such z is called n-th root of a. Notice that we can only have n different roots
for a given non-zero complex number a. For example (—16)Y%. In this case, pg = 16, §y = 7, n = 4. Therefore
the fourth root of —16 are

21T/ 9eiBT/A 9giT/A 9 iTT/A.

We remark here that if a = 0, then 0 is the only solution for 2z = 0. Therefore the n-th roots of 0 are all zero.

Sect. 4. Functions on Subset of Complex Plane.

Starting from this section, we study functions defined on complex numbers. Basically functions are different
rules which send points in some subset to their corresponding complex values. Formally a function can be

written as
f:85—C. (1.13)

In (1.13), f is called function name. S is a subset of C on which f is defined. The last C in (1.13) means f
takes complex values. Since a complex number can be represented by a + bi with a and b complex numbers,
then by the above description in (1.13), we can represent f by f1 + f2¢, where f; and f are two real valued
functions defined on S. Notice that to define a function, we need

(1). A subset S of C on which f can be defined,;

(2). For each given z € S, there is only one number, denoted by f(z), corresponding to the number z under the

rule given by the function f.

Domain of a Function. S in (1.13) is called domain of a function f. S could be the whole set C. But
in many cases, S is only part of complex plane C. Intuitively you can imagine C as a whole piece of paper.
You can use a pencil to draw a closed loop, denoted by v, on the paper and then cut along the closed loop
~v. By this way, we can obtain a part of the paper, denoted by 2, which contains the interior of the closed
loop 7. Keep this part of paper and then draw more closed loops on this part. These loops are denoted by
v; with j = 1,...,n. Each ; should has no intersection with others. Then you can keep cutting along ~;

(j = 1,...,n). Finally you will see that what we are left on € will form a part of the paper with finitely

10



many holes. Mathematically we will call this remaining part of C a multiple connected domain with exterior
boundary v and interior boundaries «y; (j = 1,...,n). Moreover you can see that € obtained before only has
exterior boundary v without v; (j = 1,...,n). Such £ will be called simply connected domain with boundary ~.

To be more precise, let us take a look at Example 2 in Sect. 3. Given zy € C and rg > 0, the interior part

of the circle with center zg and radius rg is read as
D(zg;719) := {z eC:lz— 2zl < ro}.
D(zp;r9) is called open disk in C. Obviously it is enclosed by a close loop which is actually the circle
Cir(zo;r0) := {z eC:lz— 2l = To}.

Assuming that zp = zp + iyp and using 6 € (0,27] as a parameter, then we can represent Cir(zg;rg) by the

following parametrization:
{z = (xo + rg cos 0) + (yo + 1o sin 9)2’ :0 € (0, QW]}. (1.14)

As 6 runs in (0, 27], (a:o + rg cos 9) + (yo + rosin 9)2’ sweeps out all the points on Cir(zp;rg). Meanwhile there
is no two different angles in (0, 27] which correspond to the same point on Cir(zg;rg). Using Cir(z;79), we
can enclose the open disk D(zg;79). Roughly speaking, Cir(z;7r¢) helps us cut out a region in C. Generally
we can use closed loop with any shape to cut a region out of C. This motivates us to generalize a little bit the
parametrization in (1.14). Notice that the parametrization in (1.14) has some properties.

(1). The parametrization is differentiable with respect to the variable 8. That is both zg+7¢ cos 8 and yo+1g cos 6
are differentiable functions with respect to the variable 8;

(2). For any different 6 € (0,27], (zo + rocos) + (yo + rosinf)i corresponds to different points on Cir(zo;70);
(3). If we allow § = 0, then at the two end-points of [0, 27], the parametrization z = (z¢+ro cos 6)+ (yo+ro sin6)i
takes the same value. Intuitively, the curve given by (1.14) are connected at the two end-points.

Based on the three points above, we define

Definition 1.13. « is called a differentiable closed loop in C if v can be parameterized by

{z = f1(s) + fa(s)i:se (a,b]}
with f1 and fs satisfying

(1). For all s € (a,b], f1 and fy are two differentiable real-valued functions of the variable s;
(2). For any s1, sz in (a,b] with s1 # sa, it holds fi(s1) + fa(s1)i # f1(s2) + fa(s2)i;
(3). The following two limits hold
Jm Al = A0 i f2(s) = f200).

Notice that (3) in Definition 1.13 is used to connect two end-points of v at a same location. Similarly to the
circle case, for any given v a closed differentiable loop, 7 also encloses a bounded region in C, i.e. the interior
part of . Such region will be referred as Simply Connected Region with Differentiable Boundary ~.
Moreover if we denote this interior region by €2, then the union Q U 7 is called closure of Q and is denoted by Q.

We can also cut finitely many sub-regions from a given simply connected region with boundary . More
precisely let 2 be a simply connected region with boundary ~. Qq, Qa, ..., Q, are n subsets of Q2. For each

j=1,...,n, §; is also a simply connected region with a boundary ;. If it holds

(i). Q; ﬂﬁk =, forj#k; (i7). U Q; cQ,
j=1

11



then we can subtract the union of Q; from 2 and obtain

o\ (9
j=1

Clearly the boundary of the last set contains multiple portions. Besides v, the boundary of Q, v, (j = 1, ...,n) are
also boundaries of Q2 \ U;‘L:1 Q;. In the following course the set 2\ U;‘L:1 Q; will be called multiple connected
domain with exterior boundary ~ and interior boundary ~;, ..., 7,. A simple example of multiple

connected domain is the annulus
A(zo;71,72) 1= {ze(C:rl < |z = 2| <r2}. (1.15)

The circle Cir(zg;71) is the interior boundary of A(zp;r1,72), while Cir(zg;re) is the exterior boundary of
A(zp;r1,72).

In the above discussions, boundary curves are all differentiable. But in applications, boundary curves might
also admit some corners. For example, rectangles. The boundary of a rectangle is differentiable for almost all
points except four vertices. In this course, we also allow boundary of a simply connected region (or multiple
connected region) to be piecewisely differentiable. This equivalently tells us that parametrization of boundary
curves are piecewisely differentiable functions.

Besides simply connected and multiple connected domain discussed above, we also need the concept of open

set in €.

Definition 1.14 (Open Set). Q is a subset of C. It is called an open set if for any zo € Q, we can always find
a tiny ro > 0 so that D(zp;ro) < Q.

With the definition of open set, we define

Definition 1.15 (Closed set). Suppose that T is a subset of C. It is called a closed set if its complement set
C\T is an open set.

Examples of Functions. Now we take a look at some examples.

Example 1. f(z) = 22. This is a quadratic equation. Suppose z = z + iy, then f(z) = (:c2 — y2) + 2zyi.

Clearly the real part of f is 2 — y? and the imaginary part is read as 2zy. Both of these two functions can be
defined on the whole set C. Therefore we know that the domain of 22 is C;

Example 2. f(z) = |z|%. Suppose z = x + iy, then f(z) = 22 +y%. Its real part is 22 + y?, while its imaginary
part is 0. Domain is also C.

Example 3. Function in Example 1 can be generalized a little bit. Given a natural number n and n+ 1 complex
numbers ag, a1, ..., a,, we denote by P, (z) the function ag + ... + a,2™. This function is called polynomial of
order n, provided that the coefficient a,, # 0. The number n is also called the order of the polynomial P,. The
domain of P, is also C;

Example 4. Given two polynomials, denoted by P(z) and Q(z), we can compute R(z) = P(2)/Q(z). R(z) is
called rational functions. In this case, R(z) cannot generally be evaluated on all points in C. Since we have a
denominator Q(z), the function R(z) has no definition generally on points at where @ equals to 0. For example
R(z) = (2 +3)/(z + 1). The denominator equals to 0 when z = —1. The domain of R in this case has no
definition at z = —1. Therefore the domain of R in this case is (C\{ - 1}.

Example 5. Consider z!/2, the square root of a complex number z. From Example 12 in Sect. 3, we know
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that square root of a complex number 2z is not unique. There are two numbers corresponding to the square root

1/2

of z. Therefore by the definition of a function, z'/# is not a function in general since it will be confused for us

to decide which number that z will be sent to after we take square root of z. This confusion comes from the
multiple value of argument. In fact to represent a complex number in polar coordinate, we can write z = re®.
Then a square root of z can be represented by \/Few/ 2. From this expression, r is unique determined. However
0 is not. It takes multiple values. But we can still restrict 6, for example in its principal range. Then the 6 can

now be uniquely determined. Therefore generally z'/2 is not a function. But if we define
21/2 = |Z|6iArg(z)/2,

1/2

then the value of z'/2 can be uniquely determined. Since this z/2 is defined in terms of the principal argument,

this function is also called principal square-root function. More generally we can define
2M? = |z|ei9/27 with 6 € (g, 0y + 27]. (1.16)

Here 6, is an arbitrary number in R. Since there is only one argument of a given z # 0 lying on the interval
(60,00 + 27], the z'/2 in (1.16) is still a function. From the above descriptions, we know that to define a square
root function, we must assign its argument range. The range of argument, i.e. (6y, 6y + 27] is referred as branch
of 22 in the following. For any z # 0, z//? can be defined in terms of (1.16). At z = 0, by Example 12 in Sect.

3, the square-root of 0 are all zero. Therefore 2'/2 in (1.16) is well-defined on whole C.

Example 6. Given ag € C, T(2) := 2 + ag is called translation function. Given a € R, Rotg,(2) := ez is

called rotation function. Given r¢ > 0, S,,(2) := 7oz is called scaling function. Domains of these functions are
all C.

Example 7. Exponential function. Given any complex number ¢, we can evaluate e* for any given z € C.

This function e“* will be called exponential function. Domain is C.

Example 8. For real number 6, we know

et 4+ o—if eit _ o—if
cosf) = ———, sin = ————

2 24

With the definition of exponential function in Example 7, we can extend the definition of cos and sin to complex

numbers. In fact we define

eiz + efiz eiz _ efiz
cosz:i= ——, sinz := ———

2 2q

We can also define hyperbolic sine and hyperbolic cosine function as follows:

. e —e * e +e*
sinhz := ———, coshz i= ———
2 2

Domains of functions in this example are C.

Example 9. We can also consider the inverse function of e*. Given a z, there is unique number w which equals
to e®*. Now we consider the following question. If we are given a w, can we find a z so that e* = w 7 Suppose

w = ppe'®. z = x + iy. Then it holds

e:z:+zy = % = p06200.
Therefore we must have

e’ = po and e = ¢, (1.17)
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The first equation in (1.17) gives us
x = In po, provided that py = |w| # 0.

To solve y, we will have problems. In fact by the second equation in (1.17), y must satisfy
ei (yigo) =1.

Hence it holds
y =0+ 2kn, kelZ.

Here comes the multiple-value problem again. Like the square-root function case, in order to fix a unique value
for y, we also need to fix the range of y. For example given an arbitrary «g € R, we force y to be in the interval
(o, g + 27]. Then we can find a unique k so that 6y + 2kw € (ag, g + 27]. Therefore x + iy can be uniquely

solved. Motivated by the above arguments, we define
logz :=In|z| + 10, where 6 is the argument of z in the interval (ag, ap + 27]. (1.18)

The function log z is called logarithm function. The range of arguments, i.e. (g, ag + 27], is called branch of
the log function. To define a log function, it must be accompanied with an assignment of branch. Pay attention
to (1.18). The real part of log z is In|z|. It has no definition at z = 0. Therefore log z is defined for all points
on C except 0. Now we calculate logi for example. Without assigning any branch, the notation logi means a

set of all numbers which equal to ¢ after taking exponential. By the calculation above, it follows
logi = In [i] + iarg(i) = i (g + 2k7r) . kel

If we restrict principal branch for log function, then the log function is usually denoted by Logz. Therefore
T
Logi = i—.
ogi =g
Example 10. With the definition of exponential function and log function, we can also define general power

function. For any given complex number ¢, we define

€ .= € logz.
Since log function should be defined with a given branch, z¢ can also be defined with a branch a-priorily assigned.
Generally for any given ¢, z¢ might not be able to be defined at 0. See Example 3 in the next section.
Same as the log function, if z¢ is not assigned any branch, then it denotes a set of numbers which can be

clogz Tor example ii, it holds

1
. . . —2k+—= |7
it = ezlogz —c 2 )

If we use principal branch to define z¢, then the power function is called principal power function. In this case
7r/2.

represented by e

1" is a unique number which equals to e~

Sect. 5. Continuity of a Function. Suppose that {2 is an open set of C. f is a complex-valued function
defined on Q. Surely f can be represented by f(z) = fi(2) + if2(z) where f; and fo are two real-valued
functions on 2. Therefore we can use concepts of continuity for real-valued functions to define continuity of a

complex-valued function.

Definition 1.16 (Continuity). Suppose zg € Q, then f = f1 + fai is continuous at zo if and only if f1, fo are

continuous at zg. If f is continuous at all points in €, then we call f is continuous on 2.

14



With this definition, the following properties are standard for complex-valued functions.

Proposition 1.17. Suppose f and g are continuous functions on 2. Here Q is an open set in C. Then f + g,
fg are also continuous functions on . Moreover f/g is also continuous on §) except possibly at the points on
which g = 0.

We can also compose two continuous functions together and obtain

Proposition 1.18. Let f: Qy — Qs, g : Qo —> Q3 be two continuous functions. Then go f is a continuous
function from Qy to Q3. Here Qq, Qo and Q3 are three open sets in C.
Now we take a look at some examples.

Example 1. Re(z), Im(z), |z|, Z are all continuous functions. If f is a continuous function on some open set

Q, then |f(z)] is also a continuous function on .

Example 2. Check if the function
Z/Z, if z # 0;
f(z) = / .
1, ifz=0
is continuous at 0.
Solution: For z = = + iy # 0, the real part of this f is read as
2?2 — 2
x? + y?

Re(f) =

If we approach the origin along (x,0), then Re(f)(x) =1 for all z. If we approach the origin along (0,y), then
Re(f)(iy) = —1 for all y. Clearly Re(f) has no limit while (x,y) approaches to 0. Therefore no matter what
value we assign for f at the origin, f can never be continuous at 0.

We remark here that same as for the real-valued case, f is continuous at z; iff

lim f(2) = f(z0).

z—20
If we write f = u+iv, then v and v must have same limit no matter how we approach z;. Moreover
the limit should equal to the value of f at z,.
Example 3. Check for what ¢ the function

2, if z # 0;
z) =
1) {07 if z=0.

is continuous at 0. Here z¢ is defined on the branch (—m,7].
Solution: To consider this problem, we first recall (1.18) and the definition of 2¢ in Example 10 of Sect. 4. In
fact for all z # 0, we have

c clogz _ ec(ln|z\+i9)
b

2 =e where 0 € (—m,7].

Notice that the last equality above holds by (1.18). Suppose that ¢ = ¢; + coi where ¢; and ¢y are two real

values. Then the above equality can be reduced to

¢ = 6(01 1n|z\7C29)+i(c19+62 ln|z\) _ |Z|c1676296i(610+cQ ln\z|) )

Case 1. ¢; = 0. In this case f(z) = 2° = e_c"‘aei(c2 In|=) for all z # 0. We take a modulus of f(z) and obtain

1£(2)] = |2°| = e, for all z # 0. (1.19)



If f is continuous at 0, then so is |f(z)|. Therefore as z approaches to 0, | f| should have limit. By the definition
in this example the limit must be 0. However if c; # 0, then we can approach 0 along the ray with angle 0.
Therefore on this ray, # = 0. By (1.19), it holds |f(z)| = 1 for all points on the ray with angle 0. We can also
let z approach 0 along the ray with angle 7/2. Still by (1.19), |f(2)| = e~®™/2 for all points on the ray with
angle m/2. If co # 0, then when we approach 0 along two different ways as above, |f| will take different limit.
This is a contradiction if we assume that f is continuous at 0. Therefore if ¢ # 0, then f can not be continuous
at 0. If co = 0, by (1.19) we have |f| = 1 for all . This still implies the discontinuity of f at the origin since
by definition f = 0 at the origin. If f is continuous at the origin that the limit of |f| as z goes to 0 should be
0. But in the case here |f| =1 for all z # 0 provided that ¢; = ¢3 = 0.

Case 2. ¢; < 0. In this case it holds

If(2)] = |z| e, for all z # 0.
Since ¢; < 0, for any fixed 6, it holds
liH(l] |f(2)] = +o0.

Therefore f cannot be continuous at 0.

Case 3. c¢; > 0. In this case it holds
If(2)| = |z|cre™, for all z # 0.
Since ¢; > 0, for any fixed 6, it holds
lim [ f(2)[ = 0.

Clearly f is continuous at 0.

In summary, only for all ¢ with Re(c¢) > 0, the function f is a continuous function at 0.

Example 4. Let z'/2 be the principal square-root function. Then it is discontinuous on {(m, 0):z< 0}. In

fact we have

Zl/2 _ |Z‘eiArg(2)/2

Consider the unit circle in C with center 0 and denote by zo the point (—1,0). If z is on the upper-circle and
keeps close to zg, then its principal arguments is positive and approach to 7w as z approach to zy from the
upper-half part of the circle. In this case the limit of z1/2 equals to ™2, If z is on the lower-half part of the
circle and keeps close to zg, then its principal arguments is negative and approach to —m as z approach to zg

1/2

from the lower-half part of the circle. In this case the limit of 2'/2 equals to e *"/2. Other points on the negative

half part of the z-axis can be similarly studied.

Sect.6. Differentiability of a function and Cauchy-Riemann Equation
Throughout this section, {2 denotes an open set in C. f is a complex-valued function defined on €. To
emphasize its real and imaginary parts, we also represent f by f = wu + ‘v, where u and v are real-valued

functions on €.

Differentiability at a given point z; € 2. The method to define differentiability of a function at a given
point zp € Q2 is similar to the way that we have used in the real-valued function case. Since 2 is an open set and
20 € , we can find a rg > 0 so that D(zp;79) < . For any z € D(z0;79) and z # 2, we can construct a ratio

f(z) = f(20)

, for all z € D(zp;r0) and z # zg.
zZ— 20

16



Then we call f is derivable/differentiable at zg if the limit

lim f(z) = f(20)

z—20 Z— 20

(1.20)

exists. As for the real case, we also denote by f’(z) the derivative of f at zp. That is

Fon) e i T = FCo)

z—zo )

Since we can split a complex-valued function into its real and imaginary part, limit in (1.20) exists means that
f(z) = f(20)

zZ— 20

both the real and imaginary parts of have limits as (z,y) — (xo,yo). Here we let z = = + iy and
20 = To + 1Yo-

Example 1. Suppose that f(z) =1 / z. At each non-zero point zy, we have

1 1
fE)—f() 2 2z _2-2z 1 _ 1 (1.21)
Z— 20 zZ— 20 zZZ0 2 — 20 zZ20
Since 1/z is a continuous function at zy # 0, it holds
1 1
lim — = —.
Z—20 2 20
Applying this limit to (1.21) yields
lim M:_ lim L:_%_
Z—20 Z— 20 z—20 ZZ2 )
Therefore f is derivable at 2o # 0. f'(20) = —z; 2.
Example 2. If f(z) =z, then for any 2y, we have
f(z) = f(20) _fF" % (1.22)

zZ— 20 Z*ZO.

Letting w = z — zp, we know that while z — 2, it should have w — 0. Therefore if the right-hand side of (1.22)

has limit as z — zg, then equivalently the following limit should also exists:
lim . (1.23)

But this is impossible. Since if w is real, then w = w. It follows E/w = 1. If w is pure imaginary number, then

w = —w. It follows W/w = —1. Therefore the limit in (1.23) does not exist.

Example 3. Consider the function f(z) = |z|?. given any zg, we calculate

) = f(z0) _ |22 = |zol?

zZ— 20 zZ— 20

(1.24)

If we let w = 2 — zp, then |z]? = |20+ w|? = (20 +w)(Z0 + W) = |20|*> + wW + w2y + zow. Plugging this calculation
into (1.24) then yields
f(2) = flzo)  |2” =20/  ww+wz + 2w w

=W+ 7+ 20—. (1.25)
Z— 20 Z— 20 w w

If zo = 0, then we have from (1.25) that

f(z) — f(0)
z—0

=w.
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Therefore it holds
f(z) — £(0)

lim ——————= = lim w = 0.
z—0 z — 0 w—0
This implies the differentiability of |2|? at 0. But if 29 # 0, the last term in (1.25), that is zog has no limit as
w
w — 0. Therefore (1.25) has no limit as w = 2z — zg — 0, provided that zo # 0. This tells us that |z|? is not

differentiable at zy # 0.

Remark 1.19. Example 3 illustrates the following two facts.

(a). A function f = u+iv can be differentiable at a single point but nowhere else in any neighborhood of that
points;

(b). Since u = x? + y* and v = 0 when f(z) = |z|, one can see that the real and imaginary parts of a function
of a complex variable can have continuous partial derivatives of all orders at a point and yet the function of z

may not be differentiable there.

Since the definition of derivative in the complex case is similar to the one given in real-valued function case,
the following rules for differentiation are still held in complex case.

(1). If f and g are two complex functions, a and b are two complex numbers, then it holds
(af +bg) =af +bg'.
(2). If f and g are two complex functions, then it holds

(f9)' =fg+fg.
(3). If f and g are two complex functions, then it holds
<f)' _9f' =14
g 9°
(4). If f and g are two complex functions, then it holds

fg(2))" = f'(9(2))d ().

Here we assume f and g are all derivable functions.

Now we try to explain why (b) in Remark 1.19 can happen. Supposing that f is derivable at zp, then we
know that the limit in (1.20) must exist. Therefore if we approach zo = xy + iy horizontally or vertically, the
limits obtained should be a unique one. More precisely we let z = (x9 + h) + iy, where h is a real number.

Then we can write

f(Z) B f(ZO) _ ’LL(I'O + ha yO) + ’L"U((EO + hvyO) B U((E(), yO) B ’L.'U(.’Eo,yo)
z— 2 h
~u(wo + h,yo) —u(zo,90) , .v(zo + h,y0) — v(T0,Y0)
- I T I

Now we let h — 0 and get

F'(z0) = 00|, +10gu| (1.26)

T0,Y0) T0,Y0)"
Here we have used the definition of partial derivatives for a real-valued function at (xg,yo). If we let z =

xo +i(yo + h), where h is a real number. Then we can write

f(z) = f(z0) _ ul®o,yo + h) + iv(xo,yo + h) — u(o, yo) — (o, Yo)
z— 2 ih
_ v(®o. 4o +h) —v(zo,yo)  ulzo, Yo +h) — ul(wo,0)
h h
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Now we let h — 0 and get

f(z0) = 8yv|(m07y0) — iayu|( (1.27)

z0,Y0) "

Using (1.26) and (1.27), we get

(1.28)

05y ) = P00l aogy Ol g0 = O (g g0
In other words if f is derivable at z = zg, then not only should we have the first order partial derivatives of

its real and imaginary parts. But also v and v should satisfy (1.28). (1.28) is a god-given system and will be

referred as Cauchy-Riemann equation in the following. We summarize the above results as follows.

Theorem 1.20. Suppose that f = u + iv and that f'(z) exits at a point zg = xg + iyo. then the first-order
partial derivatives of u and v must exist at (zo,yo), and they must satisfy the Cauchy-Riemann equation (1.28).

Also f'(z9) can be written as

f(z0) = 6wu|(

*0,Y0)

+ié’xv|(

z0,%0)"
Notice that the above theorem only shows that if f is derivable at z = zg, then its real and imaginary parts
should satisfy Cauchy-Riemann equation (1.28). Conversely we cannot simply conclude the derivability of f at

a point z = zg by the satisfaction of Cauchy-Riemann equation.
Example 4. Consider
f(z)—{ Ez/z, when z # 0;
0, when z = 0.
Show that f satisfies Cauchy-Riemann equation at z = 0. But f is not derivable at z = 0.

Solution: When (x,y) # (0,0), the real and imaginary parts of f are read as

23 — 3xy? y3 — 322y
u(z,y) = 21y and v(z,y) = A
respectively. Also, u(0,0) = 0 and v(0,0) = 0. Because
o u(h,0) —u(0,0) . h
ue(0,0) = Jim === ——— = lim 7 =1
and
o U(Ovy) _0(070) 1 h _
oy(0,0) = lim === ——= = lim = = 1,

we find that the first Cauchy-Riemann equation u, = v, is satisfied at z = 0. Likewise, it is easy to show that

uy = 0= —v,; at z =0. But

lim 7f(z) — f(0) = lim <Z>2
z—0 z—0 z—0 \ 2

does not exist. The reason is that we can assume z = pe’% where 6, is fixed and p — 0. Plugging into right-hand

—\ 2
2\ e—4i0
z

Of course this quantity depends on the angle of ray where z point lies on.

side above yield

From Example 4, we know that Cauchy-Riemann equation is only a necessary condition to allow f derivable
at zg. We can not simply imply the differentiability of f at zy just because f satisfies Cauchy-Riemann equation
at zg. In order to imply that f is derivable at zp, extra condition (besides Cauchy-Riemann equation) should
be added.
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Theorem 1.21. Let the function f(z) = u(z,y) + w(z,y) be defined throughout some D(zg;€), and suppose
that

(a). the first-order partial derivatives of the functions u and v with respect to x and y exist everywhere in the
D(zo;5€);

(b). those partial derivatives are continuous at (zo,yo) and satisfy the Cauchy-Riemann equations at (xg,yo),

Then f'(z0) exists, its value being f'(20) = uz (w0, yo) + v (T0, Yo)-

Example 5. Consider the function f(z) = e* = e¢® cosy + ie* siny. Its u(z,y) = e* cosy and v(x,y) = e* siny.

Then simply calculations yield
Uy = €” cosy = vy and Uy = —e*siny = —v,.

Obviously all assumptions in Theorem 1.21 are satisfied and we have f'(2) = u, +1iv, = €* cosy +ie*siny = e”.

Example 6. When using the Theorem 1.21 to find a derivative at 2y, one must be careful not to use the
expression for f/(z) in the statement of the theorem before the existence of f(z) at 2o is established. Consider,

for instance, the function

f(z) =2 +i(1 —y)*.
Here u(z,y) = 2® and v(z,y) = (1 —y)®. It would be a mistake to say that f’(z) exists everywhere and
that f/(z) = u, + iv, = 322 To see this, we observe that the first C-R equation u, = v, can hold only if
z? + (1 — y)? = 0. The second C-R equation u, = —v, is always satisfied. Therefore C-R equation is only

satisfied at = 0 and y = 1. Therefore we know that only at z = 4, f'(z) exists, in which case f’(i) = 0.

Sect.7 Analyticity and Harmonicity We are now ready to introduce the concept of an analytic function.

Definition 1.22. A function f of the complex variable z is analytic in an open set S if it has a derivative

everywhere in S. It is analytic at a point zy if it is analytic on D(zo;€) for some € > 0.

Remark 1.23. If a set S is not an open set, we can still define analyticity for a function f defined on S. In

this case we call f is analytic on S if there is an open set O containing S so that f is analytic on O.

Example 1. Recall Example 1 in Sect. 6, it is clear that 1/z is analytic at all non-zero points. The reason
is C\{0} is an open set and by Example 1 in Sect. 6, f'(z) = —z~2 exists for all z # 0. Recall Example 3 in
Sect. 6, |2|? is only derivable at z = 0. for any D(0;7), |2|? is not analytic on D(0;r). Therefore though |z|? is
derivable at 0 but it is not analytic at 0.

In the following we consider an important property of analytic function. Before proceeding we need a

definition on path-connected open set.

Definition 1.24. An open set Q is called path-connected if for any two points P and P’ in Q, there is a
differentiable curve 1, parameterized by (z(t), y(t)) with t € [a,b], so that x(t) and y(t) are differentiable functions
on (a,b). Meanwhile x(t) and y(t) are continuous at t = a and t = b with P = (z(a),y(a)) and P' = (x(b),y(b)).

With Definition 1.24, we have

Theorem 1.25. Suppose that Q is a path-connected open set. If f'(z) = 0 everywhere in Q, then f(z) must be

constant throughout €.

Proof. Let f = u(x,y) + iv(z,y). By Cauchy-Riemann equation, it holds f/(z) = u, + v, = v, — iuy = 0.

Therefore we have

Uy = Uy = Vg = Uy = 0, on . (1.29)
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Fixing a point Py in Q, for any P € 2, we denote by (x(t),y(t)) a parametrization of a curve connecting Py and
P. This curve, denoted by I, is contained in 2. Now we consider the restriction of u on [. that is the function

u(z(t),y(t)). Simple calculation yields

d
au(:ﬂ(t),y(t)) = 0,u z'(t) + Oyu y'(t).
(z(t),y(t)) (z(t),y(t))

by (1.29), the above equality implies

d

&u(a:(t),y(t)) =0, for any t € [a, b].
therefore it holds u(x(t),y(t)) = u(z(a),y(a)) = u(z(b),y(b)) for any t € [a,b]. since I connects Py and P, it
follows u(Py) = u(P). Notice that P is an arbitrary point in . w is a constant function. Same arguments can

be applied to v. Finally f is a constant function in €. O

Example 2. Let 2 be a path-connected open set in C. Suppose that f is an analytic function on Q. If f and
f are all analytic on €, then f must be a constant.

Solution: Assume that f = u + év. Since f is analytic in Q, u and v satisfy

Uy = Uy, Uy = —Vgp. (1.30)
Since f = u — iv is also analytic on €, it holds

Uy = —Vy, Uy = Vg. (1.31)

(1.30)-(1.31) imply uy = uy = v, = v, = 0 on Q. Therefore f'(z) = uy +iv, = 0 on Q. By Theorem 1.25, f

must be a constant.

Example 3. Let © be a path-connected open set in C. Suppose that f is an analytic function on Q. If |f] is a
constant function on €2, then f must also be a constant function on €.
Solution: If | f| = 0 on 2, then obviously f = 0 on 2. Now we assume |f| = ¢ # 0 on Q. Since |f|> = ff = ¢2,
it follows

2

=%

By analyticity of f, we know that f is also analytic on . The last example implies that f is a constant function.

Example 4. Let 2 be an open set in C. Suppose that f = u + iv is an analytic function on Q. Then u and v
are all harmonic functions on €.

Solution: Since u and v satisfies Cauchy-Riemann equation, it holds u, = v,. Furthermore we get uz, = vz,.
We also have u, = —v,. Therefore u,, = —v;,. From these computations, we get ugyz + Uyy = Vzy — Vgy = 0.

That is Au = 0 on 2. In other words u is a harmonic function on Q. The arguments for v is similar.

Sect. 8 Integrals Starting from this section, we study integral theory for complex valued function. For
simplicity, we call 2 a domain in C if € is a path-connected open set in C. Without mentioning €2 in the
following are all domains in C. Moreover a curve [ is called Jordan curve if it is a continuous curve without
self-intersection. Notice that a Jordan curve [ is in fact only a geometric object. It has no direction. But if we
parameterize it by a parametrization (x(¢),y(t)) with ¢ € [a, b], then automatically it is assigned a direction. In
fact when the parameter ¢ increase from a to b, the parametrization (x(t),y(t)) sweeps out the points on [ from
the initial point (z(a),y(a)) to the end-point (z(b),y(b)). In this case, the parametrization induces a direction

on the Jordan curve . In the following integrals on a Jordan curve will be defined in terms of a parametrization

21



of this curve. Therefore all Jordan curves in the following arguments should be understood as a directional

curve with direction induced by a parametrization.

Integral along path Let [ be a Jordan curve in . Suppose that (x(t), y(t)) with ¢ € [a, b] is a parametrization

of [. If f is a continuous function on €2, then we can restrict f on [ to get

f(x(t) + iy(t)), t € [a,b].

Let f = w4+ iv. Then we have

f(x(t) + zy(t)) = u(x(t%y(t)) + iv(x(t),y(t)). (1.32)

Noticing that the real and imaginary parts on the right-hand side of (1.32) are all real-valued single variable
functions. Therefore we can use definition of single variable real-valued functions to define the integral of f.

More precisely we define

be($@)4-iy@))dt:_.[

a a

b b

wla(t), (&) di + zf o(2(t), y(8)) dt.

a

All techniques used in the calculations of integrals for real-valued single variable functions can be applied in the

complex scenario.
Example 1. Compute

/4 /4 /4 /4
J etdt = J cost + isintdt = J cos tdt + zJ sintdt = sint
0 0 0 0

/4
+i(—cost)

= YX2yi(1-X2
0 2

)

0

The fundamental theorem of calculus in the real-case still holds in the complex case. More precisely let

F(m(t) + zy(t)) = U(x(t),y(t)) + Z'V(x(t),y(t)).

Then we can compute!

d d

aF(x(t) +iy(t)) = T U(z(t),y(t)) + Z’%V(z(t),y(t)).
If f = u + dv satisfies
S U@, y0) = ue@p0), T VEO.0) = o0, 50),

then we have

b b b
Jf(x(t)+iy(t))dt _ Ju(x(t),y(t))dt+ij o(@(t), y(1)) dt

a

b q b
_ f < Ua(0) (1) dt—l—z’L Ly (@), y0)) at
b b b
= U(m(t),y(t)) + iV(x(t), y(t)) = F(x(t) + zy(t))
Simply speaking, the above arguments imply
’ . o d . d d
L f(z(t) +iy(t)) dt = F(x(t) +iy(t)) | , if aF(x(t) +iy(t)) = g U(z(t),y(t)) + Z&V(x(t),y(t)).

d d d
Lfor a complex valued functionf = u+iv, if it depends on a single real parameter ¢, then we use af = au+i£v. If f depends

d
on a complex variable z, then s should be understood as complex derivative of f.
z
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Example 2. In light of Example 1 in this section, it holds

it
de _ it

dt i

Therefore we easily have

/4 )
J e dt = —ie"
0

e e A B

(i) (- 9)

0

From the previous arguments, if we can find a F (:c(t) + iy(t)) so that

S P(a(t) +iy(0) = 1 (a(0) + iy(1),

then the integral of f(z(t) + iy(t)) on [a,b] can be easily computed by making difference of F'(z(t) + iy(t)) at
the two end-points a and b. In the real case, we have chain rule. That is

(9(()" = ' (x()a' ().

Therefore if function f is of the form ¢'(z(¢))2’(t), then we can easily find out its anti-derivative function. That
is g(x(t)). In the complex case, we have similar results. Suppose f = u + iv is an analytic function on 2. Then

we have?
F(2) = uz +iv,. (1.33)
Let I be parameterized by z(t) = z(t) + iy(t) with ¢ € [a,b]. Then by (1.33) we have

F(2(t) = ua (z(t), y(t)) + ivg (2(t), y(t)). (1.34)

Since 2'(t) = 2/(t) + iy/(t), by (1.34) and Cauchy-Riemann equation we can calculate
FED)ZO = (u(@0.00) + v @0.90)) (20 +iv/0)
- ( ( (1), y(t) >x' — v (a t),y@)y/(t)) (1 (2(0), () (6) + 0 (2(8), y(0) 2/ (1))
(6))a'(

In the last equality above, we have used chain rule for multiple variable functions. Summarizing the above

computations yields

d !/ !/
af(Z(t)) = ['(z()Z'(¢). (1.35)

Notice that (1.35) is quite similar to the chain rule for real-valued single variable functions. The only difference
is / for function f should be understood as derivative with respect to the complex variable z. ’ on z(t) is the

standard single-variable derivative in real calculus.

Example 3. Let f(z) = e*. z(t) = it. Here f is analytic with f/'(z) = e*. 2/(t) = i. Therefore by (1.35) we

have
dt
This yields the first equality in Example 2 of this section.

Contour Integral Firstly we assume [ is a differentiable Jordan curve. z(t) = x(t) + iy(t) with ¢ € [a,b] is a

parametrization of [ with x(¢) and y(t) being two differentiable functions.

2Here for single variable function, / denotes the standard derivative in real calculus. If f depends on the complex variable z,

then ’ denotes its complex derivative.
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Definition 1.26 (Contour Integral on Differentiable Jordan Curves). Suppose [ is a Jordan curve. [ is param-
eterized by z(t) = x(t) + iy(t) with t € [a,b]. f(z) is a complez-valued function defined on an open set 2. 1 is

contained in Q2. Then we let
f F(2)dz i f ) (1) d. (1.36)

1 a

From the right-hand side of (1.36), it seems that the contour integral should depend on a particular
parametrization of the given curve . But from the left-hand side of (1.36), we can not read any information
about the parametrization of the curve I. Generally for a given curve ! with two end-points P; and Ps, there
can have more than one parametrization which sweeps out the curve [ from P; to P». Will two parametrizations
of | give two different integral results ? Suppose z(¢) and w(s) be two parametrizations of {. Both of these two
parametrizations induce the same direction on I. More precisely let z be defined on [a, b] and let w be defined

on [¢,d]. Moreover it satisfies
z(a) = w(e), and z(b) = w(d). (1.37)

Since z and w are parametrizations of [, they are 1-1 correspondences between their associated domain intervals
and the curve [. Fixing a t € [a,b], we can find a point z(¢) on [. By the parametrization w, we can also find a
s(t) € [e,d] so that

w(s(t)) = z(¢). (1.38)

Therefore we obtain a change of variable function s(¢) which defines on [a, b] and takes values in [¢, d]. By (1.38)
and the first equality in (1.37), it holds w(s(a)) = z(a) = w(c). Therefore we get s(a) = ¢. Similarly by (1.38)
and the second equality in (1.37), it holds w(s(b)) = z(b) = w(d). This infers s(b) = d. The above arguments

show that when ¢ runs from a to b, s(¢) runs from ¢ to d. Then we have

d b
flw(s))w'(s)ds = = J. w(s(t w'(s(t))s'(t dt.
| rwewmas o [0 wew) ) 6050
let s = () equals to z(t) by (1.38) equals to (w(s(t)))’ by chain rule

Applying (1.38) to the right-hand side above yields

This equality tells us that z and w determine the same integral result.

Remark 1.27. From the above arguments, the notation | on the left-hand side of (1.36) should be understood
as a directional curve. Once | is given and a direction on l is fized, then the integration on the right-hand side
of (1.36) is independent of the choice of parametrizations of the directional curve l. One can also check that if
we fix I and change the direction on | (usually this directional curve is denoted by —1), the resulted integration

on —l satisfies
f dz=—|f dz.

This is the same as the real calculus case. In real calculus, we have

==l

So far our curves are differentiable Jordan curves. We can also extend the definition of integral to be on

more general curves.
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Definition 1.28 (Contour). We calll a contour if there are finitely many differentiable Jordan curves, denoted
by{Lj:jzzl,”w]V},sothat

N
1= (1.39)
j=1

Moreover for any two adjacent curves l; and lj 41, the end-point on l; equals to the initial point on ;4.
With the definition of Contour above, we can define the general contour integration as follows:

Definition 1.29. Suppose that f is complex-valued continuous function on the open set Q. [ is a contour

contained in Q and can be represented as in (1.39). Then we define

Lf(z) dz := iﬁj f(2)d=.

Remark 1.30. For a contour, we may have more than one decomposition of it. That is we can have {lj 1=
1, ...,N} and {wj 1j=1, ,M} so that
N M
l = U lj = U wj.
j=1 j=1

However it can be easily checked that

N M
ZJ f(z)dz = Z f(z)d=.
=17 j=17Jwj
In other words the contour integration defined in Definition 1.29 is independent of the choice of the decomposition
of .

Example 4. Now we show some examples of contours.

(a). The polygonal line defined by

t+it, when ¢ € [0, 1];
2(t) :=
t+1, when t € [1,2].
(b). The unit circle z() = € where 6 € [0,27] is a contour. Moreover z(f) = e~*? where 0 € [0, 27] is also a
contour. Even though the set of points on these two contours are same. However their directions are different
and give us different contours. For any m an integer, we can define z(#) = e'™? where 6 € [0,27]. This is also
a contour. If m > 0, then this contour wind around the origin m times and counter-clockwisely. If m < 0, then

this contour wind around the origin m times and clockwisely.
Now we study some examples of contour integration.

Example 5. Let us evaluate the contour integral

where C is the top half



of the circle |z| = 1 from z = 1 to z = —1. According to the Definition 1.26, it holds

1 1, T
J fdz:J Wz’e“’dﬁzij do = ri.
C # o € 0

Example 6. Let C be any smooth arc with parametrization z(t). Here t € [a, b]. It then holds

Jc 2dz= Jb 2(t)2' (t)dt = 22(t)

a

= % (2%(b) — 2*(a)) .

Here we have used (1.35) with f(z) = 22/2 there.

Example 7. Let C; be the contour which start from 0 to ¢ along vertical line and then from i to 1 +

along the horizontal line. It then holds

1 1 .
1
J y—x—inzdz=J m’dt+f 1—t—i3t2dt=z+(—i).
Cy 0 0 2 2

Let C5 be the contour which start from 0 and point to 1 + ¢ along the line y = . Then it holds

f(z)dzzf(ttisﬁ)(1+z‘)dt=1z‘.

Ca 0

Example 8. Let C' denote the semicircular path
2(0) = 3¢, 6 € [0,7].
Let f(z) = 22 which is defined on the branch 0 < argz < 27. It then holds

J f dZ = f ( z9)1/2 32610(219 _ J e%log(iseie)giei@de _ f %(1n3+zarg(3e ))32619(:19
0 0

Notice that arg (3e”) should lie in [0,27). Moreover the range of variable 6 is in [0,7] which is a subset of

[0,27). Therefore it holds arg (36”) = 0. Plugging this computation into the last equality yields

J f(z)dz = 3x/§z‘r 302 40 = —24/3(1 + 1).
C 0

Example 9. Let C denote the circle z() = € where 6 € [, 71]. Let f(z) = 271** where f is defined on the
principal branch. It then holds

f f(Z) dz = J (6i0)71+i ieiede — J e(*1+i) logeieieia de
c

—T —T

Since 6 runs within [—m, 7), it is in the principal branch, we have arg (ew) = f. The last equality is reduced to

J f(z)dz = f o710 610 qp — ZJ e fdg=i(e"—e ™).
C —7

Absolute Integral Now we introduce a third type integral on curve or contour [. Suppose that [ is a differen-

tiable Jordan curve parameterized by z(t) where ¢ € [a,b]. Then we define

b
Jlf(z)|dz| ;=f FE0)] 20 d. (1.40)

Suppose [ is a contour and can be decomposed into

N
= U l;
j=1

Here {l,} is a set of differentiable Jordan curves. Then we define

[RC |dz|—2ff )laz|.

26



Remark 1.31. One can use the same arguments as for the contour integration to check that this absolute
integration is independent of the direction of the curve or contour l. That is it is invariant if you change

direction of the contour [.

The following property will be frequently used in the future. It reveals a quantitative relationship between

the contour integral and the absolute integral.

Theorem 1.32. Suppose that f is a continuous function defined on an open set §2. 1 is a contour contained in
Q. Then it holds

[ reras| < [176)1a. (1.41)

Proof. Suppose that | = U§V=1 l;. By triangle inequality it holds

’Jlf(z)dz sz;lfg f(z)dz Sjjzjl

Therefore we can assume without loss of generality that [ is a differentiable Jordan curve. If

L- f(z)dz

Lﬂ@dz=&

then (1.41) automatically holds. Therefore we can assume

ﬁf(z)dz#O

and represent it by polar representation as follows:

e'®.

Lﬂ@dz:

flf(z) dz

Equivalently it follows

J;f(z) dz

= 1® L f(z)dz.

Assume that f = u + ‘v where u and v are real-valued functions on 2. We rewrite the above equality by

Jl f(z)dz

:e—i@)Jf(Z)dz:Jucos@—l—vsin@dz-f'ijUCOS@—USiH@dZ-
l l !

Now we let z(t) = z(t) + iy(t) denote a parametrization of the directional curve [. Here t € [a,b]. Then the

above equality is reduced to

fb (u(gc(t), y(t)) cos © + v(z(t), y(t)) sin @) (a:’(t) + iy'(t)) dt

a

flf(z) dz

+ in (v(x(t), y()) cos © — u(x(t), y(t)) sin e) (ac’(t) + iy’(t)) dt

a

b
- f (u(x(t), y(t)) cos O + v(z(t), y(t)) sin 6):1:’(15) - (v(x(t), y(t)) cos © — u(x(t), y(t)) sin @) Y (t) dt

a

+ ¢ Imaginary part.
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Notice that the left-hand side above is a real number. The imaginary part above must be zero. Therefore we

get
b
Jlf(z) dz| = L u(z(t),y(t)) (m (t) cos© + 3/ (t) sin @) +v(x(t),y(t)) (a: (t)sin©® — 4/ (t) cos @) d¢
b
< J u(x(t),y(t)) (x’(t) cos © + y'(t) sin @) + v(z(t), y(t)) (m’(t) sin © — 1/ (t) cos @) ) dt
b
< [ VARG y) 200N @0 + (0)

In the last inequality of the above, we have used Cauchy-Schwartz inequality. Since |f|? = u? + 02, |2/(t)|* =

(2'(t))* + (4/(t))°, the last inequality is then rewritten by

b
f (o) dz| < j | F(=(8)] 2/ (1)) dt
l a

The proof then follows by (1.40). O

Now we take a look at some applications.

Example 10. Let C be the arc of the circle |z] = 2 from z = 2 to z = 2¢ that lies in the first quadrant.
Inequality (1.41) can be used to show that

-2 -2 2 4
fildz‘éf 24 ‘|dz|<f |Z|4+ |dz|:7f |[dz].
c < + c|? +1 C|Z‘ -1 15 C

Since
f |dz| = length of arc C,
c

it then follows
4

< —T.

15

j 2=2y,
c < +1
Example 11. Let Cr denote the semicircle z(f) = Re® where 6 € [0, ]. It holds

z+1
0 dil<
LR 21 4)(219) LR

Now we take R sufficiently large. By triangle inequality, we obtain

2| +1 . RE+D)
SLR (121> = 4)(zI* — 9) | dz] (R? —4)(R2 —9)°

z+1
(22+4)(22+9)

| dz ]

f _z+l
cp (22 +4)(22+9)

Clearly when we take R — o0, the right-hand side above converges to 0. Therefore it holds

z+1
li ————dz=0.
et LR a2 +9)
One should pay attention to the arguments in Example 8. It will be used in the following when we evaluate

improper integrals of real-valued functions.

Sect. 9 Antiderivative and Independence on Path From (1.35) we know that if there is an analytic
function f on Q so that g = f/, then the antiderivative function of g(z(¢))z'(t) (i.e. f'(z(t))z'(t)) can be easily
found and equals to f(z(t)). Here z(t) is a parametrization of a differentiable curve in Q. This motivates us a

question. For what kind of function g can we have an analytic function f on 2 so that g = f.

28



Definition 1.33. Suppose g is a complez-valued function defined on an open set ). If there is an analytic

function f on Q so that g = f', then we call f an antiderivative of g.

Using this definition, we can rephrase our previous question as follows:

Q. Given a complex-valued function g on the open set (), can we find a criterion to determine if

g admits an antiderivative on 7

Sect. 9.1 To answer this question, let us assume firstly that ¢ = f on Q for some analytic function f.

Let [ denote a contour in 2. Moreover we assume

N
:Ulﬂ

Jj=1

where [; is a differentiable Jordan curve. Then we have

ng(z) dz = Jlf/(z) dz = iljl f'(2) dz.

Suppose that z;(t) with t € [a;,b;] is a parametrization of [;. Then the last equalities can be reduced to

f ydz = Z f 2;(t)) 2} (t) dt.

Applying (1.35) to the last equality yields

Since for any j, it holds z;(b;) = zj+1(a;+1). It then follows from the last equality that

[ECLEEWO)

Notice that zy(by) is the end-point of the contour [ and z1(a;) is the initial point of the contour {. Therefore

bj

N
= Z (f(2i(b5)) = f(zi(a))) = f(an(bn)) — f(z1(a1))- (1.42)

the last equality tells us that if g has an antiderivative on €2, then for any contour [, the integral

Jg(z) dz

l

depends only on the initial point and end-point of [. It is independent of the path itself. This property is called
independence of path.

Sect. 9.2 Particularly if contour ! is closed in the sense that zx(by)) = z1(a1), then by (1.42), it always
holds

J;g(z) dz =0. (1.43)

In other words (1.43) always holds, provided that g has antiderivative on £ and [ is a closed contour in €2. Since

for any rectangle in €2, its edges form a closed contour in €2, it also holds

f g(z)dz =0, for any rectangle contained in €. (1.44)
boundary of a rectangle
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Notice that boundary of a rectangle in (1.44) is a contour which is counter-clockwisely connected or clockwisely

connected.

Sect. 9.3 Now we suppose that g is a complex-valued function satisfying (1.43) and € is a domain set.
Fix a zg € Q) as a reference point. For any z in €, since () is domain set, we can find a contour /; in € starting

from zy and ending at z. By this contour [; we calculate

J g(w) dw. (1.45)

Iy

Let I3 be another contour starting from zy and ending at z. Then of course

l:=l1U—l2

forms a closed contour in . Here —I5 has the same set of points as Iy but with different direction as l5. Using
(1.43), Definition 1.29 and Remark 1.27, we have

J;g(z) dz = jll g(z)dz + J_l2 g(z)dz = J g(z)dz — J g(z)dz = 0.

I la

Equivalently it holds

f g(z) dz = f g(2) dz.

15 lo

This equality implies that once zy is fixed and z is fixed, the value of (1.45) is in fact independent of the path
l1. For any contour [ starting from zy and ending at z, the integral

| 96wy du

l

should be identical. Therefore we obtain a complex-valued function

f(z) = fl g(w) dw, (1.46)

z

where [, denotes any contour contained in {2, starting from zy and ending at z. We now need to show the
analyticity of f in €. In what follows we always assume that g is continuous in 2. To prove that f(z) is
analytic, we need to prove the existence and continuity of the first-order derivatives of f. Moreover we also
need to show that the real and imaginary parts of f satisfy Cauchy-Riemann equation.

Fix an arbitrary z in  and let hy, ho be two real numbers sufficiently small. The four points z, z + hq,
z+thy and z + (h1 + ihg) form a rectangle whose four vertices are exactly the four points z, z + hy, z + i ho
and z + (h1 + ihg). Let L be a contour starting from zy and ending at z + (h1 + ihg). Let [; be the contour
which starts from zy and move along L to z + (h1 —|—ih2), then move horizontally from z + (h1 + ihg) to z+iha,
and then move vertically from z + ihs to z. Similarly we let l5 be the contour which starts from zp and move
along L to z + (h1 + ihg), then move vertically from z + (h1 + ihg) to z + h1, and then move horizontally from

z + hy to z. Of course [; and ls are two contours starting from zy and ending at z. By (1.46), it holds

f(z+h1) =J

i g(w) dw + f g(w) dw.

[z+(h1+ih2),z+h1]

Here [wy,ws] denotes the segment starting from the point wy and ending at point ws. Also by (1.46), we have

)= | () du = | stwyaws |

[z+(h1+ih2),z+h1] g(w) dw + f g(w) dw.

[z+h1,z]
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By the last two equalities, it follows
e -f@ == gwde=|  gwaw
[z+h1,2] [z,2+h1]

Therefore we obtain

fle+h)=flz) 1

hy T [z.24h1]

g(w)dw — g(z), as hy — 0. (1.47)

In the last convergence above, we have used mean value theorem and the continuity of g at z. Similarly (1.46)
gives

f(z+ihg) = j

Lg(w) dw +J g(w) dw.

[z+(h1+ih2),z+ih2]
Also by (1.46), we have
52) = | stw)dw= | guwyaw+ |

[z+(h1+ih2),z+ih2] g(w) dw + f g(w) dw.

[z+iha,z]

By the last two equalities, it follows
ferit) - 1@ =-[  gwde=|  gw)dw
[z+iha,z] [z,2+ih2]

Therefore we obtain

f(z+iha) — f(2) 1

hes B hf? [z,2+ih2a]

glw)dw —ig(z), as hg — 0. (1.48)

Here we also have used mean value theorem and the continuity of g at z. We now let f = u + iv and let
z = x + ty. Then it holds

fa+h)—fz) _ u@+h,y)+iv(+h,y) —ul@y) —iv(z,y)
h1 hl

w(x + hy,y) —u(z,y) v+ h,y) —v(z,y)
+1
hl hl

Applying (1.47) to the last equality and using the definition of partial derivatives, we obtain

Oz + 1050 = g(2). (1.49)
(z,y) (z,y)
Similarly we have
flz+ihy) = f(2) _ wlz,y+he) +iv(z,y+hg) —ulz,y) —iv(z,y)
hg h2

w(@,y + he) —u(z,y) = v(@,y+hs) —v(z,y)
+1
hQ h2

Applying (1.48) to the last equality and using the definition of partial derivatives, we obtain

=1g(2). (1.50)

(z,y)

Oyl + 10y

(z,y)
By (1.49)-(1.50), we have existence and continuity of the first-order partial derivatives of v and v. Here the
continuity comes from the assumption that g is continuous on . Moreover (1.49)-(1.50) also imply the satis-
faction of Cauchy-Riemann equation by u and v. By Theorem 1.21, f defined in (1.46) is analytic throughout
Q. Moreover by (1.49) and Theorem 1.21, f' = g. In other word f defined in (1.46) is an antiderivative of g.

We now summarize all the arguments in this section as follows:
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Theorem 1.34. Suppose that g is a continuous function on the domain set 2. Then g admits an antiderivative

on ) if and only if g satisfies the independent-of-path property.

Some examples are followed.

Example 1. f(z) = e™. [ is a contour starting from i and ending at i/2. Since F(z) = e”z/w is an an-
tiderivative of f, it holds

i/2

eﬂ'Z

141

m m

Lf(z) dz =

Example 2. The function f(z) = 1/2? is defined in the domain C\ {0}. On this domain, F(z) = —1/z is an

antiderivative of f. Therefore it holds

f f(z)dz =0.
Cir(0;1)

Example 3. Let f(z) = 1/z. Cy is the right-half
2(0) = €%, 0el[—n/2,7/2]

of the circle Cir(0;1). Clearly F(z) = Logz is an antiderivative of f(z). Therefore it holds

9

1
J —dz =Logz| =mi. (1.51)
c ? —i
Next let Cy denote the left-half
; 3
0) = 0 0 E o
SO

of Cir(0;1). Clearly F(z) = log z whose branch is given by argz € [0, 27) is an antiderivative of f. It then holds

1
f —dz =logz
Co %

Notice that Cy | Cs gives us the whole circle Cir(0;1). However by (1.51)-(1.52) we know that

1 1 1
J fdz=J fderf —dz =27 # 0.
Cci1JCs ? c, ? Cy ?

It then follows that on C\ {0}, 1/z does not satisfy the independent-of-path property. Hence by Theorem 1.34,

1/z does not have antiderivative on C\ {0}. This is of course true since antiderivative of 1/z must be one of

= Ti. (1.52)

K2

log z. But log z is not analytic on the branch cut. It is in fact even not continuous on the branch cut. This
argument shows that log z is an antiderivative of 1/z off the branch cut of log z. If we have a closed contour [

intersecting with the branch cut of log z, we can not simply claim

1
ffdz=0.
1 R

For C; and C5 in this example we can apply Theorem 1.34. The reason is because the branch cut of log z used

in these two cases have no intersection with C; and C5, respectively.
Example 4. Suppose that
1 .
f(z) =exp (210gz) = +/|2| €972, |z| >0, 0€[0,2m).
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Let C is any contour from z = —3 to z = 3 that, except for its end points, lies above the z-axis. We know that

!
(23/2> = §21/2. (1.53)
2
But in order to avoid intersection between C7 and branch cut of log z used in the definition of power functions,
3
we choose log z with branch defined on fg, g Now the branch cut is on the negative imaginary line,

which has no intersection with Cy. Surely we have (1.53). Here one should notice that the branch is from —m/2
to 3m/2. When we restrict on the upper-half plane, the argument should run from 0 to 7. Therefore on the
upper-half plane, z%/? defined in this branch equals to +/]z| €'?/? with 8 € (0, 7). It matches the restriction of f

on (4. It holds

2 !
f(z) = (3,23/2) , on the upper-half plane.

3
Here 2%/2 is evaluated on the branch [—;T, ;) Therefore we get

3

2
f(z)dz = =242 =2v3 (1+14).
C1 3 -3
Sect. 10. Integration of analytic functions on closed loop In this section we assume f is an analytic
function on Q where Q is a domain set. Let dQ be the boundary of Q which is counter-clockwisely oriented. We

are interested in the integral

L I d.

Sect. 10.1. Integral on boundary of rectangle To make geometry of €2 as simple as possible, we assume
here € is a rectangle. Without loss of generality in the following argument we can assume (2 is a square with
length of each edge equaling to a. The argument in the following can be easily generalized to rectangle case.
In the current situation, we denote by €y the square 2 and let [y be the boundary of the square Q. [ is also

counter-clockwisely oriented. Let
In=1| f(2)dz (1.54)
lo

We now use middle points of each edge of g to separate €y into four identical sub-squares (see Fig. 1).
These four squares are denoted by g ; with 7 = 1,...,4. Their associated boundaries are denoted by ly ; with

j=1,...,4. Here ly ; is also counter-clockwisely oriented. It can be shown that
Iy = (z)dz + (z)dz + (z)dz + f(z) d=. (1.55)
lo,1 lo,2 lo,3 lo,a
If for all j =1,...,4, we have

f(z)dz

lO,j

< i}[o , (1.56)

then by triangle inequality we obtain from (1.55)-(1.56) that

5| <

f(z)dz

lo,1

+ f(z)dz

lo,2

+ f(z)dz

lo,3

+ f(z)d=

lo,a

1 1 1 1
< o+ 70+ 70+ 0] =[]
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Hence it follows | Iy | < | Iy |. But this is impossible. In other words we must have one j in {1, ...,4} so that

f(z)dz

l()’j

> i}]o . (1.57)

Denote this ly; by {;. The square enclosed by [; is denoted by €;. Moreover we let

I = J f(z)d=.
L
(1.57) immediately implies
1

We can apply the above arguments to the square €27 and obtain /o and its enclosed square 25 so that Qs < Q4

and
1
|| = 1 |11 |, where I := f(z)d=. (1.58)
l2

Repeating the above arguments inductively we have a sequence of I,, and a sequence of squares €,, with 0Q2,, = 1,,
so that

Qi1 < Q. (1.59)

Moreover if we define

then we also have
1
EAESAP (1.60)
(1.60) shows that
|| <4|L|<4|L|<..<4"|I,] (1.61)

Notice (1.59), the sequence of squares are shrinking to a point, denoted by zy € Q. Since f is analytic at zp, it
must holds

i | £2) = f(z0)

zZ— 20 zZ— 20

— f'(20) | = 0. (1.62)

As for I,,, it satisfies

L= [ s = [ 50— 0 = ot - s = [ [LEZLE) )| (s ) a

In L

Therefore we get

zZ— 20

1] < max[fE= S0

<ZO)' fl 12— 2| |da]. (1.63)

Notice that for any n, zq is in €,. For any z on [,, |z — 2| is bounded from above by the largest distance of
two points in ,,. This largest distance is achieved by the length of the diagonal of ,,. Since the length of each
edge of 2, is 27 "a. It holds

|z — 20| < V227 "a, for any 2z € [,,.
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Applying this estimate to (1.63) yields

|1, | < max f(z)—f(zo)f,(zo)‘ \/52*7%1[ |dz| = \/§a241"max'
z€ly Z— 20 z€lpn

f(2) = f(z0)

zZ— 20

— f'(20)]-

n

Applying this estimate to the right-hand side of (1.61) and utilizing (1.62), we get
f(z) — f(20)

| Iy| < 4v2a”? max
zZ— 20

z€ly

— f'(zo)‘ — 0, as n — oo.

Therefore we have

Theorem 1.35 (Cauchy-Gousat). Suppose f is an analytic function on the closure of an rectangle. Let | be

the boundary of this rectangle counter-clockwisely oriented. Then it holds

Jlf(z) dz = 0.

Sect. 10.2. Integral on any closed contour in a rectangle Cauchy-Gousat theorem is a building block for
our generalization. But in Theorem 1.35, the geometry of the contour is too restrictive. In fact it is a boundary

of a rectangle. Now we assume f is an analytic function on a closed rectangle €2 and generalize Theorem 1.35 to

ff(z) dz =0, for any closed contour [ contained in . (1.64)
1

From Sect. 9, (1.64) is true if we know that f has an antiderivative on €. Now we need to construct an
antiderivative of f. Let zg be the center of the rectangle ). For any z € ), we can connect zy and z by the two

ways shown in Fig. 2. Cauchy-Gousat theorem implies that
f(w)dw = f(w) dw.
Ly Lo
Therefore we can also define
F(z):= f(w) dw = f(w) dw.
Ll L2

We then can apply the same arguments as the first part of Sect. 9.3 to show that F(z) is analytic and satisfies

Therefore (1.64) follows by Theorem 1.34. That is
Theorem 1.36. Suppose [ is an analytic function on the closure of an rectangle. Then (1.64) holds.

Sect. 10.3. Simply connected domain Now we assume (2 is a simply connected domain. Let lg = 02 be
counter-clockwisely oriented. We can deform [y a little bit to l;, where [; is also counter-clockwisely oriented
(see Fig.3). Moreover we can let the distance between [y and [; to be very small. Then we slice the strip between
lp and [y into many small pieces. Each piece is so tiny that it can be contained in a rectangle on which f is
analytic. Therefore by Theorem 1.36, the contour integral on boundary of each small piece must be 0. Summing
contour integrals on boundaries of all small pieces, we have

l f(z)dz + l f(z)dz=0.

0 —t1

Here the integrals on common edges are also cancelled out. The above equality show that

f(z)dz =] f(z)d=.
lo Iy
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Since €2 is simply connected without holes, we can deform [y to a point, denoted by zg, in € by a sequence of
contours lg, l1, ..., In ... For each l; and l;11, we can make their distance to be very small. By the previous

arguments, it follows
f(z)dz = J f(z)dz, for any n. (1.65)
lo In
Since f is analytic on Q, f must be bounded. We get

'Lf(z)dz

By this limit and (1.65), we get

< f | f(2)||dz| < max]|f(2)|length(l,) — 0, as n — 0.
I 2e0

J F(=)dz = 0.

lo

That is

Theorem 1.37. Suppose [ is an analytic function on the closure of a simply connected domain Q2. Then

f(z)dz = 0.
oQ

Sect. 10.4. Multiple connected domain For domain with holes we can separate it into finitely many simply
connected domains, as shown in Fig.4. Then Theorem 1.37 can be applied on the boundary of each sub-domain.

Noticing the direction induced on the boundaries of holes, we can easily get

Theorem 1.38. Suppose f is an analytic function on the closure of the multiple connected domain €. Let ly be
the exterior boundary and l; with j = 1,...,N be the interior boundaries. If ly, ..., Iy are all counter-clockwisely

oriented, then it holds

N
. f(z)dz = ;L f(z)dz.

Sect. 11. Cauchy Integral Formula. Fixing a domain set €2, we assume that f is analytic on the closure of

Q. In terms of f, we define

g(2) == M, for allzeﬁ\{zo}.

Z— 20
Here z( is an arbitrary point in Q. Let € > 0 be small enough so that the disk D(zp;¢) = Q. It is clear that g is
analytic on the closure of Q\ D(zp;€). Applying Theorem 1.38 to g, we get

J g(z)dz = J g(z) dz.
o0 Cir(zo;€)

Here 02 and Cir(zg;€) are all counter-clockwisel oriented. Plugging the representation of g into the above

< J
Cir(zo;€)

Since f is analytic on the closure of €, g(z) is uniformly bounded on Q. The last estimate gives us

equality yields

f2) = (=)

Z— 20

1)~ S g,

Fle) zZ— 20

[RCE I
Cir(zo;€)

zZ— 20

'|dz|.

f(2) = f(z0) dzl <[ f(2) = f(z0) ‘ @) < gL [ g
o0 2= 20 Cir(zo;€) Z =20 2eQ Z— 20 Cir(z0;€)
= 2memax f(Z)f(ZO)’
zeQ Z— 20
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Since € can be arbitrarily small, therefore we can take € — 0 on the most-right-hand side above and get

[IECE P
o '

zZ— 20

Equivalently it follows

f(zo)J(3 ! dz = /(z) dz. (1.66)

Q0% — 20 o0 2 — 20

Noticing that is also analytic on the closure of Q\ D(zp;¢€), we can apply Theorem 1.38 one more time

Z— 20

to obtain

1 1
f dz = f dz = 2mi.
Q% T 20 Cir(z;¢) # — 20

The last equality above uses Example 3 in Sect. 9.3. Moreover by applying the last equality into (1.66) yields

for the function

zZ— 20

fleo) = — [ L@ g, (1.67)

2mi Joq 2 — 20

This formulae is the famous Cauchy’s integral formula. Several applications of (1.67) can be carried out as

follows.

App 1. The integral on the right-hand side of (1.67) is on the boundary of Q. In other words we only
need information of f on 02, then the right-hand side of (1.67) can be evaluated. We donot need any in-
formation of f inside Q2. However zp is an arbitrary point in Q. The left-hand side of (1.67) tells us the
value of f at zyp. Therefore (1.67) indeed gives us a representation formulae for the value of f at any point

in Q in terms of the integral on 0. That is to say that the value of f is uniquely determined by its values on 0f2.

App 2. If we have an analytic function f, then we can rewrite (1.67) as follows:

) 42 = 9mif(z0). (1.68)
o0 zZ— 20

Therefore for any integral of the type given on the left-hand side of (1.68), we can simply evaluated it by 27i

times the value of f at the given location zg.

COS z

Example 1. Let C be the counter-clockwisely oriented unit circle Cir(0;1). Let f(z) = — 9 Since f
z
is analytic on the closure of D(0;1), it holds by (1.68) that
o
[ o= [ L8 e omip - 2
c 2(z2+9) cz—0 9

App 3. Fixing an arbitrary zg in € and taking h a complex number with small modulus, we can have zy+h € €.
Therefore by (1.67), we get

f(z(ﬂ—h):ifa Lz)dz

2wt Joq 2 — 20 — h

Subtracting (1.67) from the above equality yields

Fzo+ h) = flz0) = — f(z)< 11 )dz ILQf(Z)(ZZO)(ZZOh)dZ.

211 Joq z—z20—h z—2 " 2mi (z =20 —h)(z — 20)
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Equivalently it follows

flzo+h)—flzo) 1 f(2)
h 2w LQ (z — 20 — h)(z — 29) dz.
By using this equality, we obtain
flzo+h)— flzo) 1 f(z) _ 1 1 o1
I L= I e e e
_h f(2)
- =~ LQ e S (1.69)

Since z € 0 and zg € €2, then it must hold

|2 = 2| > min |w—2z|>0, for any z € 09 . (1.70)
w € 0F)
1
Moreover we can take h so that |h| < 3 ming e a0 |w — 20 | Then by triangle inequality, it holds

1 1
— 29— h| = |z — — > mi — — — mi — = — mi — . (1.
|z — 20 — h| = |z — 20| |h|/wnen(17rlﬂ|w 20 | 21})121(1?19’11) 20| 2wnc}lélg|w zo|, for any z € 0Q. (1.71)
Applying (1.70)-(1.71) to (1.69), we get
(CETCES (S N O [ FICTR
2

h 2mi J a0 (2 — 20)2 21 Jsq 12 — 20 — h||z — 20)?

u max_ e oo | f(2)| 3 length(092).

i .
(minw e oo [w - 2|

Obviously if we take h — 0, the right-hand side above converges to 0. In other words by the definition of

complex derivative, it holds

f'(z0) = = LQ (f(z)2 dz, for any zg € . (1.72)

271 z—zp)

(1.72) is the Cauchy integral formulae for the derivative of f.

Inductively we assume that

|
(n) ! f(z)
f(20) = 27 S G = 2oy T dz, for any 2 € €2, (1.73)

here f(") denotes the n-th order derivative of f, then we can repeat the above arguments and get

(n)(, () - n! ; 1 - 1 ;
£ (20 + ) — £ (z0) Qﬂ)[( ]d

27i 5 z—z29— h)"1 (2 — zo)nt!

210 Jaq (z — 29 — h)ntl(z — z)nH!

Equivalently it follows

(n) — f(n) ! — o\l (s o pntl
h 27t Jaq h (z — 20 — h)nt1(z — z)"*!L
When we take h — 0, it holds
1 1
for any z € 09. (1.75)

(z — 20 — h)"+1(z — zo)"H1 — (z — z0)2n+2’
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Moreover as h — 0, it also has

(z — 20)"" — (2 — 29 — )"
h

— (n+1)(z — 20)". (1.76)
Applying (1.75)-(1.76) to (1.74) we get
FM o+ h) = f™M(z0)  (n+1)! J f(2)
aa (

h 27 z — zp)" T2 dz ash =0,

Equivalently we get

n+1)! z
FrD(z) = ( - ) J:m G _fi0§"+2 dz, for any zp € Q,

The above arguments indeed imply that not just the first-order derivative of f, f has any n-th order
derivative, which can be represented in terms of (1.73). (1.73) is also called generalized Cauchy integral for-
mulae. One has to be noticed that. Initially we only assume the analyticity of f without any information on
the higher-order derivatives of f. But by using Cauchy integral formulae (1.67), we can show (1.73) holds for

any natural number n. That is f, once analytic, then it must have all the higher order derivatives automatically.

App 4. If we have an analytic function f, then we can rewrite (1.73) as follows:
f(2) _ 2T ()
B 1.77
|, T as = o). (177)

Therefore for any integral of the type given on the left-hand side of (1.77), we can simply evaluated it by the
right-hand side of (1.77).

Example 2. Let C be the counter-clockwisely oriented unit circle Cir(0;1) and let f(z) = e2*. Then it
holds
e% T 8mi
—dz= —f®0) = =—.
| Sa-Fro0-3
Sect. 12. Liouville’s theorem and the fundamental theorem of algebra. In this section we assume f

is an entire function and satisfies
|f(z)] < M, for any z € C. (1.78)

Here M > 0 is a constant. Fix an arbitrary R > 0 and let C'g be the circle centered at 0 with radius R. Moreover
we let Cr to be counter-clockwisely oriented. For any zg € C, we can take R > |zo| so that zg € D(0; R). Here
D(0; R) is the disk with center 0 and radius R. Then by Cauchy integral formula, we have
1 f(z)
! = — ———d f R > .
7'(z0) ML@ﬂﬂz or any R > |z
By this equality and (1.78), it follows

: a
o Cn |z - ZO|2

| £ (z0)| < |dz]. (1.79)

| ==

o cn 12— zo|2
Since it has |z — 29| = |z| — |20] = R — |20]| for any z € Cr, we can keep estimating the right-hand side of (1.79)

as follows:

/ M1 __MR | .
‘f (Zo)‘ < 27T(R—|,Z0|2J‘CR ’d2| = (R— |Z0D2 0, as R Q0.

Therefore we have f’(zp) = 0 for any z9 € C. In other words f must be a constant. This is the Liouville’s

theorem stated as below:
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Theorem 1.39. If f is an entire function satisfying (1.78) for some M > 0, then f must be a constant.
An application of Liouvilles’s theorem is a proof for the fundamental theorem of algebra. Let
P(z)=ag+ ... + ap_12""" + a,2" = q(2) + anz™, where a, # 0.
By triangle inequality we easily have
|P(2)] = |an||2]" — |q(2)]. (1.80)
Since the highest order of polynomial ¢ can not exceed n — 1, it holds

o laCz)]

== ag||2]"

There then has a R > 0, so that for any z with |z| > R, it satisfies

1
la(2)] < 5lanl|2I"

Applying the above inequality to the right-hand side of (1.80) yields

1 1
\P(z)|>§|an||z|">§|an|Rn, for any z with |z| > R. (1.81)
Equivalently it has
I 2 f ith 2] > R (1.82)
< — or any z with |z . .
[P(2)| ~ [an|R
1
If p(z) has no root on C, then o is an entire function on C. By (1.82), we must have
p(z
! < { L 2 } fi eC
< max{ max y T s or any z € C.
| P(2)] zeD(0:R) [p(2)|" |an|R"

Hence by applying Liouville’s theorem to must be a constant function, which is impossible. That is

1 1
p(2)" p(z)
Theorem 1.40. Any non-constant polynomial must have at least one root on C.

Sect. 13. Maximum Modulus Theorem In this section we use Cauchy integral formula to study the so-
called Maximum Modulus Theorem. Firstly we assume Q = D(zp; R). f is an analytic function on the closure
of Q. Then by Cauchy integral formula, it holds

1 f(z)

21 Cir(zo;R’) Z— 20

f(20) dz, for any R’ € (0, R].

Here Cir(zo; R’) is counter-clockwisely oriented. If the maximum value of |f(z)| in the closure of € is achieved

at zg, then we get from the above equality that

1 | f(2)| 1 | f(20) |
o)l < 5 Cl gzl < o | ol |
T JCir(zo;R’) ‘Z Z0| T JCir(z0;R’) |Z 20|

| f(20)|
2R’

dz| =

x 2R = | f(20)].

In fact the second inequality above should be an equality. Rewriting the second inequality above yields

N IEETETI
Cir(zo;R’)

2 |z — 20|

However the integrand above is a non-negative function. This implies | f(2)| = | f(20)]| for any z € Cir(zo; R').
Since R’ is an any number in (0, R], we get | f(2)| = | f(z0)]| for any z € D(zp; R). By Example 3 in Sect. 7, f

must be a constant function.
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Now we assume €2 to be an arbitrary domain set in C. And let f be analytic on Q. If there is zy € Q on
which | f(2)]| takes its maximum value over €, then by the above arguments, for some disk D(zp;7) < Q, f
should be a constant function. Now we let z; be an arbitrary point in . Since 2 is path-connected, we can
find a differentiable curve [ connecting zg and z;. Meanwhile [ is contained in €. Suppose [ is parameterized
by z(t) with ¢ € [a,b]. Then we know for some e > 0, f(z(t)) should be a constant on [a,a + €]. Here we
assume z(a) = zp, 2(b) = z1. € > 0 is sufficiently small so that z(t) with ¢ € [a,a + €] is contained in D(zp;7).
Denote by €4, the largest number in (0,0 — a] so that f(z(¢)) is a constant in [a,a + €4z ]. By continuity
we have f(z(a + €maz)) = f(20)- If €maz < b — a, then we can find another radius ' so that f(z) is a constant
function on D(z(a + €maz); 7). Therefore we have another € > 0 suitably small so that f(z(t)) is a constant
in [a + €maz, @ + €mar + €/]. This is a contradiction to the definition of €,,4,. Hence it holds €,4: = b — a.
Equivalently it holds f(z0) = f(21). Since z; is an arbitrary point in €, then we get f(z) = f(z0) for any z € Q.

The above arguments imply that if the maximum value of | f(z)| over (1 is achieved by an interior point
20 € Q, then f must be a constant function. In other words if f is analytic on Q and is not a constant function,

then the largest modulus of f(z) can only be achieved by its boundary point. That is

Theorem 1.41. If a function f is analytic and not constant on the closure of a domain set Q, then | f(z)| has

no mazimum value in Q. That is, there is no point zo € Q such that | f(2)| < | f(z0)]| for all points z € Q.

Example 1. Fundamental theorem of algebra. Theorem 1.41 can also be applied to prove Theorem 1.40.

p(z)

Suppose p(z) is a non-constant polynomial. If p(z) has no root in C, then for any r > 0, must be analytic

on the closure of D(0;7). By Theorem 1.41, it holds

1 1
< max

for any z € D(0;r). 1.83
PO =& ) (o) -5

)

Let R be the same radius as in (1.81) and take r > R. Then by the first inequality in (1.81), it holds

1
|P(z)| = B |an |, for any z € Cir(0;7).

Applying this estimate to the right-hand side of (1.83) yields
1 2

o] S Tanr” for any z € D(0;7).
n

1
Taking r — o0, we get ﬁ = 0 for any z € C. This is impossible. The proof is done.
p(z
Example 2. Consider the function f(z) = (z + 1)? defined on the closed triangle region R with vertices
at the points z = 0, z = 2 and z = i. A simple geometric argument can be used to locate points in R at which
the modulus | f(2)] has its maximum and minimum values. The arguments is based on the interpretation of

| f(2)| as the square of the distance d between —1 and any point z € R:
d* = |f(z)] = |z = (-1

As one can see, the maximum and minimum values of d, and therefore | f(z)|, occur at boundary points, namely

z = 2 and z = 0, respectively.

Sect. 14. Taylor’s and Laurent’s series In this section we study two important series related to analytic
functions. In the following arguments, D(zo; Rp) is the open disk with center zy and radius Ry. A(zo; R1, Re) is

the open annulus with center z(, interior radius R; and exterior radius Ry. Firstly let us consider Taylor series
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of an analytic function f on D(zg; Ro).

Sect. 14.1. Taylor’s series Suppose that f is analytic on D(zo; Ro). Then for any z € D(zp; Ry), we

can apply Cauchy integral formula to get

1 1
f(z)= ff Slw) dw = —J ) dw. (1.84)
2mi Cir(zo;Ro) W — # 2mi Cir(z0;Ro) (w — z0) — (2 — 20)
As for the denominator, we rewrite
z2—z
(wzo)(zzo)z(wZO){lw_ZZ}.
Applying this equality to the right-hand side of (1.84) yields
1 f(w) 1
z) = — dw, for any z € D(zg; Ro). 1.85
f( ) 2 J.Cir(zo;Rg) w — 2o 1— T %0 ( 0 O) ( )
w — 2o
Since z € D(z0; Ro) and w € Cir(zo; Rp), we have |z — zg| < Ry and |w — zg| = Ry. This implies — ZO 1.
w — 20
By geometric series, it follows
1 B i zZ— 2 J
1_Z_ZO_j=O w — 2o ’
w — 2o
Applying this equality to (1.85) and fixing an arbitrary natural number N, we obtain
1 2 Tz—z)
flz) = —J dw
2 Cir(z0;Ro) W — ;) LW — 20 |
N HJ © j
1 - 1 —
= b J Z Z 0 d’LU + — Z [ z 0 ]
27 Cir(z0;Ro) W 0 = | W — 20 | 211 Cir(z0;Ro) W — %0 Pl — 20
N o ©
_ 1 _
= ZLJ f(w) 72 “0 dw+ — 2 [Z ZO] dw
oy 2 Cir(z0;Ro) W — 20 | W — 20 | 211 Cir(z0;R0) W~ 20 ;5L — 20
S (L f(w) 1 fw) v [zma)
— Z 7J —————dw | (z - 20)’ + 5= Z [ ] dw,
=5\ 270 Jein(zosre) (W — 20)7 271 JGir(z0:r0) W — 20 ;5 LW 20
for any z € D(z; Rp).
In terms of the general Cauchy integral formula (see (1.77)), it holds
1 (4)
L )y, SO
2mi Cir(z0;Ro0) (U} - Zo)j+ j'
By the last two equalities, we get
N () 1 8 — !
f(z)= Z fi(fo)(z —z0) + Tj f(w) Z [ZZO] dw, z€ D(zo; Ro). (1.86)
Jrr S T JCir(z05Ro) W~ %0 ; 5y LW T 20

Rewriting the last equality implies

4! 2mi w— 2

N £()(y, . w) & [z—2z]
1 IS Vil e IR CE D)

j=0 ir(z0;Ro) W — %0 j=N+1
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Hence it follows

N o0 y
fU) (2 1 f(w e 1Y
‘f(z)_z (v ey | - o N > o1 dw
7=0 J: T | JCir(z0;Ro) W — 20 j=N+1 w — Zo
1 _ J
< — | f(w) [ZZO] | dw|
27 JGir(z0:R0) 1w — 20| sy Lw— 20

Suppose that | f(w)| < M for all w € D(zp; Ro) and some M > 0. Then by triangle inequality, the last estimate

is reduced to

M 0
27TRO

zZ— 20 J

N

| dw |
w — 2o

N
' 2 f(j) (z — 20)’

CiI‘(Zo;Ro) j:N+1

M i <|Z—ZO|)]dw
27 Ry Cir(zo;Ro) j=N+1 Fo

|z — 20|V F1
J N+1
= M 2 ( ) — MR07.
j=N+1 1— M
Ry
. |2 — 2|V *! ' i
Since |z — 29| < Ry, we have N1 — 0, as N — o0. We then can take N — oo in the last estimate and
0
obtain
X £(4) )
flz)=>] ! jEZO) (z—2)",  ze€ D(z0;Ro). (1.87)
=0

(1.87) is the famous Taylor series expansion of an analytic function on D(zg; Rp).

1
Example 1. Let f(z) = 1= On |z| < 1, it holds

1_
P = L

Therefore on |z| < 1, we have

Example 2. Let f(z) = ¢*. On C, it holds
fOz) =€

Therefore on C, we have

i 1

0 J

Example 3. Let f(z) =sinz = %. On C, it holds
FO () = 2T (—i)le ™

2
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Therefore on C, we have

0

f(z)zsinzzzi‘. ) i 2k+ 2k 2k+1_2 2k+ 2k+1_

Sect. 14.2. Laurent’s series Now we assume f is analytic on A(zo; R, R2). For any z € A(zo; Ry, R2), we
can take e > 0 sufficiently small so that D(z;€) © A(zp; Ry, R2). Obviously A(zo; R1, R2) \ D(z;¢€) is a multiple

connected domain with Cir(zg; R2) being its exterior boundary. Moreover Cir(zg; Ry) and Cir(z;€) are interior

boundaries of A(zp; R1, R2) \ D(z;€). By multiple connected version of Cauchy’s theorem, we have

Jc = dw = Llr( = o Lir(z-e) = - e

ir(zo;Rp) W — # ir(zo;R1) W — % w—==z

Here Cir(zo; R1), Cir(zo; R2) and Cir(z;€) are all counter-clockwisely oriented. By (1.68), it follows

w—z

f f(w) dw = 2mi f(z).
Cir(z;€)
Applying this equality to the right-hand side of (1.88) yields

f(z) = % LH( ) = L L ) gy L L CHR, (1.89)

ir(ze) W% 270 JGir(zo3R0) W — 7 271 JGir(zo3 1) W — 2

In the following we deal with the two terms on the most-right-hand side of (1.89). By the same arguments as

in Sect.14.1 for the Taylor series, it holds

1 1 ,
7.[ Lw)dw = 2 7J f(iw).ﬂdw (z — 20)’. (1.90)

2 Cir(zo;R2) W — 2 =0 2mi Cir(zo;R2) (w - ZO)]
Now we consider the last term in (1.89). In fact we also have

w—z=(w-—2)— (2 — 20)-

But in this case z € A(zp; R1, R2) implies that |z — 29| > Ry = |w — %], for any w € Cir(zp; R;). Different from

Taylor’s series, we take —(z — zp) in front in the last equality and get

1 1 1 1 & (w—2)\"
_ - M(—=) . zeAloR R
w—z —(2—2);_WT2 z—20 =\ 2~ 20
zZ— 20
By this equality we have, for any natural number N, that
1 11 S (w—=\"
T P R
2mi Cir(zo;R1) w—==z 2mi z — 20 Cir(zo;R1) k=0 =20
N k
1 1 —
_ b J fw) Y (“’ ZO) dw
270 2 = 20 Jcir(zo;R1) im0 \Z T %0
11 & — )"
-t J fly S (“’ ZO) dw
2mi 2 — 2o Cir(z0;R1) k=N+1 N7 T F0

1 1 N w — 2p k
L 2 20 frs Cir(zo;Rl) y4 20

11 N (v
-t Y (P22
2Tz — 20 Cir(zo;R1) k=N+1 ZT 4
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Same as for the Taylor’s series case, it follows

N k
1 1 1 —
ff de+fizf Fw) (M) dw
21 Cir(zo;Ry) W — 2 2wz — 2o =0 JCin(z0:R1) Z =20

M % J M x J
fdw|= M v ( i ) dw)|

27T|Z - ZO‘ Cir(zO;Rl) j=N+1 27T|Z - ZO| Cir(Zo;Rl) j=N+1 |Z - ZO|

w — 2o

zZ— 20
R{V+2

© J — _IN+2
= M ) ( R ):M'ZZO'—>0, as N — oo

Pyl |z — 2o 1 Ry
|z — 20|

Therefore we get

€L 1) gy =~ L $ (o )t | w0t (L91)
2mi Cir(zo;R1) w—==z 2mi k=0 Cir(zo;R1)

Changing variable by letting j = —(k + 1) in (1.91), we have j = —1,—2,.... Here one needs to know that the

index k in (1.91) runs from 0, 1, .... Now we can reduce (1.91) to
1 1 9 _
omi J) gy - L (z — 20)’ J f(iw).ﬂdw. (1.92)
270 Join(zoiRy) W T 2 2m j=—1 Cir(z0;R1) (w— 20)

Applying (1.90) and (1.92) to the most-right-hand side of (1.89), we obtain

,OOL &w z—z) L_OO ﬂw 2= z0)’
e= jgo <27Ti Lir(zo;Rz) (w— zp)I+! 4 ) ( o 2mi j—Z (JCir(szl) (w— Zo)jﬂd ) ( 7

=—1

In fact for any R € [Ry, Rs], it follows

[0 [ IO [0y en
Gir(zosy) (W = Z0)? Cir(z0:Ra) (W — 20) Cir(z0;R) (W — 20)7
The last two equalities then imply
& 1 w ,
f(z) = 2 (27” JCir(Z ) (wf(z();j“ dw | (z — 20)7, for any z € A(zo; R1, R2). (1.93)
Jj=—® 05

(1.93) is the famous Laurent’s series for analytic functions on annulus.

Remark 1.42. If f is also analytic on D(zo; Rg), then f admits a Taylor series on D(zo; Rg). One can show
that in this case Taylor series of f on D(zp; R2) and Laurent series of f on any A(zo;r, Re) agree with each
other. Herer € (0, Rg). In fact all coefficients of negative indices in the Laurent series of f equal to 0 by Cauchy

theorem.

Remark 1.43. If f is analytic on D(z; Ro) and can be represented by
x .
f(z) = > aj(z — 20), (1.94)
j=0

then a; must be Taylor coefficient for any j = 0,1,.... Samely if f is analytic on a(zo; R1,R2) and can be

represented by



then a; must be Laurent coefficient for any j € Z. We only consider the Taylor series case. As for Laurent

series, the proof is similar. Let k be a fized natural number. By (1.94), it holds

f(z) - (k1) ay & J—(k+1) < = (k+1)
mz Zaj(z—zo) +z—z + Z a;(z — 2p) + 2 a;(z — 2g) .
0 j=0 0 ilkt1 J=N+1

Now for any R € (0, Ry), we integrate the above equality over Cir(zo; R) and get

f(2) S f ~(k+1)
_Jw a (2 — 2o
JCir(zo;R) (Z - zo)k+1 i—0 ! Cir(zo;R)

N 0
+ J a;(z — z9)?~FD 4 J Z a;(z — z9)? ~FD,
Cir(zo;R) j=k+1 Cir(Z(];R) j:N+1

By Theorem 1.3/, the first and third integral on the right-hand side above equals to 0, in that integrands in these
integrations all have antiderivative functions. Therefore the last equality is reduced to

0
F®)(z0) = 2miay + f 2 a;(z — zp)? ~kHD for any natural number N. (1.95)
Cil‘(ZO;R) j:N+1

211
K

Here we have used (1.77). Let z* be a point on Cir(zo; Ro). Since the series

® .
a;j(z* — zp)?

§=0

converges, there is a constant M > 0 so that
la;||2* — 20! < M, forany j=1,...
Therefore for any z € Cir(z9; R), it satisfies
J J J

|aj(z — 20)" | = |a;(z* — 20)’ [ZZ* zso] ' = |a;(z* — z0)’ | [ZZ* ZZOO] ’ <M [Ro] , Jorany j=1,...

By the last estimate, triangle inequality and geometric series, it follows

® .
J Z a;(z — z0)?~* D dz
C

ir(zo;R) j=N 41

w .
‘aj(z — zO)J_(kH) ’ |dz|

< sJ’
Cir(zo;R) j=N+1

o0 R 7
< 2tRT*M )] [] —0, as N — o0.
. Ry
j=N+1

By this limit we can take N — oo in (1.95) and get

1
ak = 4 ®)(20), foranyk=1,....
The above equality still holds for k = 0. Therefore once an analytic function can be represented by series (1.94)

in a D(z0; Ro), then this series must be Taylor series.

1
Example 4. Let f(z) = FEE This f is well-defined on 0 < |z| < 1. Since we have
z z
L _ iol(—l)kzmC |z| <1
1+22 ’ ’

0

J
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Therefore on 0 < |z| < 1, we have
[ee]
fz) =), (=1)F

This is the Laurent series of f.

1
Example 5. Let f(z) = Zr T If |z]| < 1, then
- _

f(z)=—zl 7 =—zZzJ—ZZJ=—1—2Zz].
_Z F j=0 j=0 j=1

This is the Taylor series of f on |z| < 1. If | 2| > 1, then we have

1
1+~ NnNa1 &1 &1 51
_ Z _ - I i — _
f(z)—l 1_<1+Z>sz_z,zj+z,zj+l_1+2sz'
—; 7=0 7=0 7=0 7=1

This is the Laurent series of f on |z]| > 1.

Example 6. By Example 2, it holds

|
j=0 J
This is the Laurent series expansion of e'/# with center 0. By comparing the coefficients with (1.93), we have
1 el/w 1
L —dw=—,  j=01,..
210 Jeir(o;r) WY J!
In particular, it follows
1/w 27
f C—dw="0 =01,
Cir(0;R) W7 J!

Sect. 15. Isolated Singularities. In this section we assume that f is analytic on the punctured disk
{ze(C:0<|z—z0\ gRO}.

Clearly for any 0 < 71 < ro < Ry, f is analytic on the closure of A(zp;71,72). Therefore f can be expanded by
the Laurent series as follows:
* .
f(z) = Z a;(z — z0)’, for anyze{ze(C:O< |z — 20| <R0}. (1.96)
j=—0

There are three cases that might happen from the above Laurent series expansion. Case I. a; = 0 for any
j < —1; Case II. There is a natural number Ny so that a; = 0 for any j < —Ng — 1. But a_p, # 0; Case IIL
There are infinitely many negative integers, denoted by ji, j2, ..., jk, ... so that a;, # 0. We are going to study

these three cases in this section.

Sect. 15.1. Removable Singularity. Firstly we consider case I. By the above assumption, it holds

flz) = 2 a;(z — 20), for any z € {ZG(C 10 <]z — 2 < Ro}.

=0
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Initially the function f has no definition at zy. But the series on the right-hand side above has definition at zj.

In fact if we plug z = 2o into the series on the right-hand side above, we obtain

Zaj(zfzo)j = ag, at z = 2.

In other words by letting f(zo) = ag, we can extend the definition of f from the punctured disk {z 10 < |z—2] <
Ro} to the whole closed disk {z |z — 20| < RO} . In the following we still use f to denote this extended function

of f. Now comes a question. Is this f analytic throughout the whole closed disk {z Dz — 20| < Ro} ? Here
we only need to check the differentiability of f at the newly defined location zy. By the definition of f at zg, it
holds

f(z)—f(zo):Za;(Z—Zo Z (2 — 20)

Jj=0

Therefore

0 N
M:Z%(Z—ZO = Z (z—z) ' + Z a;j(z—20) " (1.97)

j=1 j=N+1
Let z* by a fixed point on Cir(zg; Ro). The series
0
20" =z
is convergent. One can find a constant M > 0 so that
aj(z*—zo)j’ < M, for any j =0, ....
By this upper bound, it holds
0 1 0 5 2 j—1
- , —
Y, ai(z— =)’ ’ = ﬁ‘ 2 aj(Z*—Zo)][* ] ’
J=N+1 z 20 J=N+1 z 20
1 & : z—z '
< 2% — 2| 2 ‘aj(Z* - 20)’ [*0] ‘
z 20 J=N+1 z Z0
< M S EmalT Mo [|z—zOT1
|2* — 20| P z* — 29 Ry Pyt Ry

Since we need to take z — zp, we can assume |z — 29| < Rg. By geometric series, the above estimate can be

reduced to

‘ |z — 20|
$ o < 23 [z—zoq“_M[Roo]

Pyt o Sl Ro Ry | |2~z
Ry
Utilizing this estimate and (1.97), we get
£z o) N ‘ o
l—a1’ < Zaj(z—zo)rl + 2 aj(z —20)7 !
S =2 j=N+1
N [|z — zo]
M Ry
< ai(z—z) '+ =
Ry
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By taking z — zg, it holds from the above estimate that

f(z) = flz0)

Z— 20

— 0, as z — 2.

In other word, the newly defined function f is derivable at zg. Therefore f is analytic throughout the whole
closed disk { z:|z—20| < RO}. This comes the name of this type singularity. In fact you can see this singularity

can be removed by redefining f at zy to be the ag in the Laurent series expansion of f.

Sect. 15.2. Poles. Now we consider Case II. As in the assumption of Case II, f(z) in (1.96) can be

written as
f(z) = 2 a;(z — z0)7, where a_p, # 0.

Taking (z — 29)~™° in front, we get

B Z;O=7NO aj(z — zo)/t Mo _ Yoo r—nNo (2 — 20)F
f(z) = = )™ = o)W .

We denote by g(z) the function

9(2) = > an—no(z — 20)*.
k=0

Similarly as in Sect. 15.1, this function ¢ must be analytic throughout the whole closed disk { z:|z—20] < Ro}.

Moreover
9(20) = a—n, # 0. (1.98)
From the above arguments, we know that f in this case can be represented by

fe) = 2O

(z — 20)No’
where ¢(z) is analytic throughout {z Dz — 20| < RO} with g(zg) # 0. By the above representation, it holds

_ 9@ l9(20)| _
|f(2)|7 |Z—Zo|N0 - 0 = 0,

as z — 2g.

In this case 2 is called pole of f with order Nj.

Sect. 15.3. Essential Singularity. The singularity in Case III is called essential singularity. From the
first two cases, in Case I, it holds

f(z) — ¢, as z — 2.
Here c¢ is some constant. In case II, it holds

f(z) — oo, as z — 2p.

Therefore we can guess that in this case f neither converges to a finite constant ¢, nor diverges to o0 as z — zg.

In fact we can show

Proposition 1.44. For any complexr number c, there is a sequence z, — zy so that it holds

| f(zn) —c| — 0, asn — oo.
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To prove this result we need the following lemma.

Lemma 1.45. If f is analytic on {z eC:0<|z—2 < RO} and

1f] < M, 0n{z€C:O<\z—zo|<Ro}, (1.99)
for some constant M > 0, then zy is a removable singularity of f.

Proof. Suppose
f(z) = Z a;(z — z0)7, ze{zeC:0<|z—zo|<Ro}.

For any j < —1, it holds

f(w) _ f(w)
JCir(zO;RO) W dw = JCir(zo;e) W duw- (1'100)

Here € > 0 is any small radius. The above equality holds by multiple connected version of Cauchy theorem. By
(1.99), we have

[t gl e,
Cir(zo;€) (w - ZO)J Cir(zo;€) |w — Zo|J

< 2rMe I — 0, as € — 0.
Applying this limit to (1.100) yields

J _Jw) L dw=0, j=-1-2..
Cir(zo0;Ro0) (’LU - ZO)j

Therefore the Laurent series a; = 0 for any j = —1, -2, .... Therefore f can be represented by
m .
f(z) = ) aj(z = 20).
§=0

Similar argument as before implies that zy is a removable singularity of f. O
Now we prove Proposition 1.44.

Proof of Proposition 1.44. If on the contrary Proposition 1.44 fails to be true, then there is a complex

number ¢, an €y > 0 and rg € (0, Rg) so that

| f(z) —c| = €0, forze{z:0< |z — 2o gro}. (1.101)
Denote by g the function
1
9(z) = m
By (1.101), this g is analytic on {z (0 < |z— 20| < To}. Moreover it holds
|g(z)|<%7 foranyze{z:0<|z—zo|<ro}.

Applying Lemma 1.45 to this function g, we get g(z) has a removable singularity at zo. In other words

g(z) = ﬁ = ]ibj(z — 2, z € {z (0 < |z— 20| < ro}. (1.102)
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If by # 0, then it holds

[00)
li bi(z — 20) = by # 0.
S J;) i (2 — 20) 0 #

By (1.102), it follows

1
lim f(z) =c+ —.
z2—2z0 bO
This shows that | f| must be uniformly bounded on {z 10 < |z — 2] < RO}. Hence by Lemma 1.45, z; is a
removable singularity of f. This is a contradiction since zy is assumed to be an essential singularity of f. If
bo = 0 and there is a natural number Ny such that by = ... = by,—1 = 0, but by, # 0, then it holds

Z bi(z— 20)! = (2 — zo)N"h(z).

=0

<~

Here h(z) is an analytic function on {z Dz — 20| < 7“0} with h(zg) # 0. Still by (1.102) and the above equality,
it follows

h(z)~!

(2 — 29)No”

f(z)=c+

In this case zq is a pole of f with order Ny. This is still a contradiction to the assumption that zg is an essential

singularity of f. The last case is when b; = 0 for any j = 0,1, .... In this case we get from (1.102) that

b
f(z) —e¢

=0, ze{z:0<|z—zo|<r0}.

This can happen if and only if f = o0 on {z 10 < |z =2 < ro}. It is still impossible. Therefore statement in
Proposition 1.44 must hold. O

Remark 1.46. In fact we can not only approach each finite value ¢ by f in a small neighborhood of zy. If zgy
is an essential singularity of f, then it can assume every finite value, with one possible exception, an infinite
number of times. This is the famous Picard’s theorem. Its proof is omitted here. Interested readers may refer
to Sec. 51 in Vol. III of the book: Theory of Functions of a Complex Variable by A. I. Markushevich.

Now we use one example to illustrate Picard’s theorem.

Example 1. Consider f(z) = e'/?. Clearly z = 0 is the essential singularity of f. For any z € {z 0<|z| < 1},

f(z) # 0. The value 0 is the only exceptional value which can not be taken by f in {z 0 < |z| < 1}. In fact

let wy = pye®* where py # 0. We construct the equation

;Y
P 3

—el=Pe "2 = p,etfx,

By the above equation it holds

=z v
[z = Px and e 1=zl

e — e, (1.103)
The first equation in (1.103) tells us

zi = log px. (1.104)
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The second equation in (1.103) gives us

Connecting (1.104)-(1.105), we get

1

Utilizing this equality, we get from (1.104)-(1.105) that 2z, = 2, + iy, where

log p —04 + 2nm
Ty = Yn =

(logp>,<)2+(79*+2mr)27 (logp*)2+(79*+2mr)2

are all solutions of (1.103). Equivalently at z,, f(z,) = ws. Moreover one can easily check that as n — oo,

zn — 0. i.e. wy can be taken infinitely many times by f in any neighborhood of 0.

Sect. 16. Isolation of points in preimage. In this section we assume 2 is a bounded domain set. f
is a non-constant analytic function throughout the closure of 2. Let ¢ be a value which can be taken by f. Now

we consider the set of pre-image of ¢ under the function f. That is

FYe) = {z eQ: f(z) = c}. (1.106)
Suppose zo € f~1(c). It holds f(z9) = c. By Taylor expansion, we have
[ee] 0
f(2) Z (z—20) = Z i(z — 20)? z € D(20; €0). (1.107)

Here ¢y > 0 is small enough so that D(zg;e9) < Q. Moreover we assume ay # 0 for some natural number
N. Otherwise f(z) = c for all points in D(z9;€0), which implies that f(z) = ¢ for all z € Q. Without loss
of generality, we still use IV to denote the smallest index so that the corresponding Taylor coefficient of f is
non-zero. By (1.107), it follows

f(2) —c=(2—20)Vh(2), where h(z) = an + ant1(z — 20) + ... (1.108)
Notice that ay # 0. Therefore when ¢g is small enough, it must hold
h(z) # 0, z € D(zp;€0).

By this result and (1.108), we know that in D(zp; €g), only at zp can we take the value c¢. In other words if f is
not a constant function and f takes value ¢ at another location z7, then this location z; must keep ¢y distance
between zg, at least. This property is the so-called isolation of points in preimage. With this result we can get

the following analytic continuation result.

Proposition 1.47. Let f and g be two analytic functions on Q. If there is a sequence z, € Q so that f(z,) =
9(zn), then f(2) = g(2) for all z € Q.

Proof. Let h(z) = f(z) — g(z). By assumption h(z,) = 0 for all n. If h does not identically equal to 0, then
the locations where h take value 0 must be isolated. But € is bounded. We can of course extract a subsequence
of z, so that the subsequence z,, converges to a point z, € . By analyticity we also have h(z4) = 0. But now
2% is not an isolated point at where h = 0. In any neighborhood of z,, you can find a z,, for large k so that
Zn, lies in this neighborhood and f(z,,) = 0. O
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An application of this proposition is the following reflection principle.

Theorem 1.48. Suppose that Q@ = QT JIJQ™, where QF and Q™ are symmetric with respect to the x-axis.
Moreover we assume that QF is in the upper-half part of the complex plane C with Q+ {Teal a;m's} =1[. Let f

be an analytic function on Q. Then

f(z)=[f(Z), 2€eQ (1.109)

if and only if f is real-valued on I.

Proof. Let z = x be a real number in [. Therefore z = Z. By (1.109), it holds f(z) = f(Z) = f(z). Therefore
f(2) must be real-valued on I. On the other hand let g(z) = f(%)

on Q. If f is real-valued on [, then it holds g(z) = f(Z) = f(z) = f(z) for all z € I. By Proposition 1.47, it holds
g(z) = f(z) for all z € Q. The proof is done. O

f(Z). Tt can be easily shown that g is also analytic

Sect. 17. Residue Theorem. In this section we assume that [ is a simply connected curve. 2 is the region
enclosed by [. Py, ..., Py are N locations in €. Suppose that f is analytic on Q ~ {Pl, e PN}. Here ~ is the

set minus. Then we are interested in the contour integration

J f(2)dz, where [ is counter-clockwisely oriented.
1

Let € > 0 be sufficiently small radius. It is small so that D(P;; €) keeps away from { for all j = 1,..., N. Moreover
€ is small so that the closure of these N disks are mutually disjoint. By multiple connected version of Cauchy
theorem, it holds

N
> J f(2) dz. (1.110)

j=1 Cir(P]‘ ;E)

[ECETS
!
Here Cir(P;;e€) is also counter-clockwisely oriented. Now we compute

J f(z)dz, forj=1,..,N.
Cir(Pj;e)

Fixing a j in {1, N }, we can expand f in terms of Laurent series as follows:

G =3 anlz— P, forzeD(Pj;e)~{Pj}. (1.111)

It is clear that
1

2mi Cir(Pj;e)

f(z)d=.

Equivalently
f f(z)dz = 2wia_;.
Cir(Pj;e)
This equality tells us that the coefficient a—; in (1.111) is crucial for us to compute the contour integration of

f on Cir(Pj;€). In the following we give a name for a_;.

Definition 1.49. Let f be analytic on D(P;r) ~ {P} f satisfies

[o0]

f2)= ), an(z—P)", forzeD(P;r)~{P}, (1.112)

n=—uo

Then we call a_y in (1.112) the residue of f at the point P. It is denoted by Res(f; P).
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With this definition and the arguments above, we can rewrite (1.110) as follows:

N
Jlf(z) dz = 2mi Z Res(f; P;).

This gives us

Theorem 1.50. Assume that | is a simply connected curve. § is the region enclosed by l. Py, ...,

locations in Q. Suppose that f is analytic on Q ~ {Pl, ...,PN}. Then (1.113) holds.

Theorem 1.50 shows that to compute the contour integration of f on I, we just need to do:
(i). Check if there are singularities of f in the domain enclosed by ;
(ii). If f has no singularity in the domain enclosed by [, then the contour integral of f on [ is 0;
(i
(iv). The contour integration of f on ! can then be evaluated by (1.113).

p(2)
q(z)

We now compute the residue of f(z) = at z = z9. Here p and ¢ are analytic at z = 2.

Case 1. ¢(z9) # 0. In this case f is also analytic at zg. The residue of f at zy is 0;

(1.113)

Py are N

iif). If there are singularities in the domain enclosed by [, denoted by P, ..., Pn, then compute Res(f; P;);

Case 2. ¢(z) = (z — 20)"¢(z), where m is a natural number. ¢ is analytic at zy with ¢(zp) # 0. In

this case it holds

p(2)
b(2)
Z) = ———"— 1.114
1) - 22 (1114)
Letting g(2) = ZEZ;, we know that g is analytic at zg. Then g can be expanded near zy by the following Taylor
z
series:
e¢]
2 (z — 20)’ near 2. (1.115)
7=0
Here for any j = 0, ..., we have
()
9" (20)
b= = (1.116)
Now we plug (1.115) to (1.114) and get
0
Z z—20)? 7", near 2.
This is the Laurent series of f near zy. By this Laurent series, it holds
Res(f; Zo) = bm—l-
In light of (1.116), it follows
(m-1)
o _ 9 (20)
ReS(f,ZO) = m (1117)

In the following we use some examples to apply the above arguments.

Example 1. In this example



Now we compute Res(f;0). In fact we just need to let g(z) = e* — 1, 20 = 0 and m = 4 in (1.117). By this way

it follows )
Res(f;0) = —.
6
Then by Residue Theorem (Theorem 1.50), it holds
| rwe-F
Cir(0;1) 3

Example 2. Evaluate

Here [; is the counter-clockwisely oriented |z — 2| = 1. Notice that in this example

1
f(Z):m-

The region enclosed by [y is the closed disk {z dle—2] < 1}. Clearly z = 2 is the only singularity of f in this
closed disk. Therefore by Theorem 1.50, it follows

dz
— = =2mR ;2).
[ Sy = 2mimestr2
1 .
Now we let g = —, zp =2 and m = 5 in (1.117). Then
z

Res(f;2) = 35

Hence the last two equalities yield

J‘ dz _m
5, 2(z—2)5 16

Here I5 is the counter-clockwisely oriented |z — 2| = 5. Notice that in this example

Example 3. Evaluate

1
f(z):m~

The region enclosed by Iy is the closed disk {z Dz —2] < 5}. Clearly z = 0 and z = 2 are the only two
singularities of f in this closed disk. Therefore by Theorem 1.50, it follows

d
Jb ﬁ = 2miRes(f;2) + 2miRes(f;0).
. 1 1 .
Residue of f at 2 equals to 3 Now we let g = W, 20 =0and m = 1in (1.117). Then
P
R (fO) — i
es(f;0) = —55-

Hence we get

[ -mTi
L 2(z—2)5 16 16
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Example 4. The two functions p(z) = 1 and ¢(z) = 1 — cosz. Clearly the lowest order term in the Taylor

expansion of ¢(z) is z2. Therefore we have

f(z) = p(2) = M, where g(z) = %.

Of course the residue of f at 0 is zero. On the other hand, let ¢ in (1.117) be as in this example. Moreover we

let zg = 0 and m = 2 there. So the residue of f at 0 can also be calculated as follows:

. () = I 22(1—cosz)—225inz
im ¢'(z) = lim =
z—»Og z—0 (1 — COS 2)2
Example 5. Consider the function
cos z
f(z) =cotz = —
sin z
At nm where n is an integer, sin z = 0. Therefore we can have
g(z) z—nm
f(z) = ) where g(z) = cos z — .
z—nm sin z

Now we let g in (1.117) as in this example and let zg = nm, m = 1 there. Therefore it holds

Res(f;nm) = lim g(z) = 1.

zZ—>nT
Example 6. Consider the function

z —sinh 2z
zZ) = ———.
1) 22sinhz
Notice that z? sinh z = 0 implies z = 0 or z = nmi, where n is an integer. Now we compute the residue of f at

these locations. Firstly we consider nmi where n # 0. As before we can rewrite f as

g(2) z —sinh z z — nmwi
= h = .
) z—nmi’ where g(2) 22 sinh z
Then by (1.117), it holds
11 (—1)"

cnmi) = i = = )
Res(f;nmi) z—lﬁ?mg(z) nmi cosh nmi nmi

Now we consider the residue at 0. In fact sinh z near 0 can be written as follows:

. sinh z
sinhz =z .

sinh z sinh z

The definition of can be extended to the location 0. If we use h to denote the extension of

z
then clearly h(0) = 1 s 0. Plugging sinh z = zh(z) into the definition of f yields

on C,
z

1—nh(z)
TE
By L’Hospital’s rule, it holds
. 1—nh(z) . z—sinhz | 1-—coshz 1 .. sinhz 1.,
il—{% 22 zll—r}% 23 =il—r>% 322 z_éll—{% z _gil—{%COShZ= 6

1
Therefore f can be analytically extended to the origin. Indeed we can redefine the value of f at 0 to be —5 %°

that the extended f is analytic at 0. By this way the residue of f at 0 equals to 0.
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Sect. 18. Improper Integrals. Improper integrals are integrals for real-valued functions on R or RT =

{x x> 0}. In terms of proper integrals, we define

R—0

f f(z)dz = lim LRf(x) dz.

As for the improper integrals on R, we use the following principal way to define the corresponding improper
integrals:
o] R
P.V.J f(z)dz = lim f(z)dx.
—0 R—w J_g

In this section we use Residue theorem to evaluate four types of improper integrals.
Sect. 18.1, Type I. Type I integrals are for rational functions.

Example 1. Evaluate the integral:

JOO dz
o a0 +1°

Firstly we pick up a contour. Let Cr be the upper-half circle with center 0 and radius R. Moreover Cg is
counter-clockwisely oriented. Then we get a contour Iz by moving from —R to R along the real axis and then
moving from R back to —R along Cr. The region enclosed by g is denoted by D},. Clearly it is the upper-half
part of the closed disk {z Hz] < R}. In D}, there are three zeros of 2° + 1. They are

co=¢€eT0 =i, cy=c¢

Therefore by Residue theorem, it follows

dz . 1 1 1
fl o 2w (Res <Z6+1;co> + Res (z(;_”;cl) + Res (ZGH;CQ)> . (1.118)
R

For any k£ =0, 1,2, it holds

R 1 L 2= Ck . 1 1 Cr Ch
es| ——;ci | = lim = lim —=—"— =2 = =2,
S41) T S 041 se 625 66 68 6

Applying this result to the right-hand side of (1.118) yields

f dz _JR dz +J dz 27
28+l ) gat+1 Jo, 28 +1 37

Equivalently it gives us

R
d 2 d

J _dw 2w ,J _dz (1.119)

_R .%'6 +1 3 Cr 2'6 +1
As for the last integral above, it holds
dz |dz]| 2R
< = —> U, — .
LRZGH‘ LRRG—l R 0w

By this limit and taking R — oo in (1.119), we have

o0
P.V.J I
ozt +1 3
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Since the integrand is even, we know from the above result that

J ®ode  ow
o #5+1 3
Sect. 18.2. Type II. Improper Integrals from Fourier Analysis. In this section we consider

foo f(z)sinaz dz and JOO f(z) cosax dz, (1.120)

where a is a positive constant. In terms of the Euler’s formula, we can equivalently consider

foo f(z)e™™ da. (1.121)

Now we pick up the same contour I as in the previous section. By Residue theorem it follows
f(z)e'* dz = J f(z)e*** dz + f(z)e*** dz = 2mi Z Res (f(2)e'*; P;) .
lr —R Cr j=1

Here we denote by P; (j = 1,...,N) the N singularities of f(z)e’®* in Dg, for large R. By the last equality, we
get

R N
f f(2)e""* dz = 27i Z Res (f(z)e"*; P;) — J f(z)e""* dz. (1.122)
_R =1 Cr

Therefore to evaluate (1.121), we need residue of f(z)e’®* at each P;. Moreover we also need to check the limit

lim (2)e* dz. (1.123)
R—0 Cr
Example 2. Evaluate
o0
2
f S da (1.124)
0 (22 +4)
. 1 .
Letting f(z) = 5 and a = 2 in (1.122), we get
(22 +4)
R 2z N 22 22
j eizdx:QM'ZRes eiz;Pj —J 672(12.
-R (22 +4) et (22 +4) Cr (22 +4)
2z
Clearly 2: is the only singularity of ﬁ in Dp for R large. Therefore the last equality is reduced to
z2 44
R eiQw ez?z ei?z
f ———— dz = 2miRes | ————;2i | — J —————dz, for large R. (1.125)
-R (22 +4) (22 +4) Cr (22 +4)
On one hand we have
ei2z g(Z) ein
= —, where ¢g(2) = ———.
(22 + 4)2 (z —2i)? (z + 2i)?
By (1.117), it follows
Res [ i) = §(20) = e (1.126)
(22 + 4)2’ 32 '



On the other hand we have

ei22 e~ 2y
[ e« el < [ —S—glaal.
Cr (22 +4) Cr Cr (R2 —4)

Notice that on Cg, the y-variable is non-negative. Therefore the last estimate can be reduced to

€i2(m+iy)

2+

122
J 672dz <j %Mz\:%—)O, as R — .
Cr (22 +4) cr (R? —4) (R% - 4)

Applying this limit together with (1.126) to the right-hand side of (1.125), we have

0 2x R 2T
P.V.J 672 dr = lim © 5 dx = 57r4'
—o (22 +4) Ro© )R (22 + 4) 16e

Taking real part on both sides above yields

PVJ cos 2 do — 57r4.
x2+4 166

By even symmetry of the integrand above, it follows

JOO cos 2x 5
x = )
o (22 + 4)2 32et

One can see that it is important to show that the limit in (1.123) equals to 0. Now we give a general result:

Lemma 1.51 (Jordan’s lemma). Suppose that
(a). a function f(z) is analytic at all points in the upper-half plane y = 0 that are exterior to a circle |z| = Ry;
(b). Cr denotes a semicircle z = Re? (0 < < 7), where R > Ry;

(c). for all points z on Cr, there is a positive constant Mg so that
|f(z2)| < Mgp and lim Mg =0.
R—0
Then the limit in (1.123) equals to 0.

Proof. Since

T

F(2)eie* dz = f

f (Rew) eiaRewReiHi de = ZRJ f (Reie) efaRsin OBiQRCOSGeiG d07
0

Cr 0

by (c) in the hypothesis of the lemma, it follows

f(z)el** dz| < RMRJ e aRsint qg. (1.127)
Cr 0
Now we consider .
J efaR sin 6 dé.
0
Clearly it can be separated into
T ) /4 ) 37/4 ) e ]
f e—aRsmO do = J e—aRst d6 + j e—aRsmG de +f e—aRsma de. (1128)
0 0 /4 37/4

For the first integral on the right-hand side of (1.128), since

sin 0
li =1
o0 0 ’
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there is a positive constant ¢y so that

$in @
511; = o, on [0, 7/4].
By this inequality, it holds
/4 ) /4 e—ﬂCOR9 /4 1
f e—aRsmG de < J- e—acoRQ de _ < . (1129)
0 0 acoR | acoR

As for the second integral on the right-hand side of (1.128), it holds
37/4 ) 3m/4 —+v/2aR/2
f eoRsing g < J eVIR24g - TC (1.130)
/4 /4 2

Here we used sinf > +/2/2 on [r/4,37/4]. For the third integral on the right-hand side of (1.128), we apply

change of variable « = m — 6 and get
o ) /4 . /4 .
J‘ efaRsm0 de = J efaRsm(ﬂ'fa) do = f efaRsmoz dev.
37/4 0 0

(1.129) can then be applied. Summarizing the above arguments, we have

efaRsme do < +
0 acoR 2

J” - 2 re~V2aR/2

Plugging this estimate into the right-hand side of (1.127) yields

) IM —+/2aR/2
f(z)emzdz‘é i +RMRL—>O, as R — oo.
Cr aco 2
The convergence above holds by (c) in the hypothesis of this lemma. The proof is finished. O
Example 3. Evaluate
© xsin 2z
—— dz. 1.131
L 2+ 3 v ( )
Letting f(2) = 221 3 and a = 2 in (1.122), we get
R 221 2z
x 22, ze
JRx2+3dx—2mZRes (2)e ,Pj)—fCRMdz.
Clearly +/3i is the only singularity of f(z)e’?* in Dp for R large. Therefore the last equality is reduced to
R 2z ) 2z
f . ;;i_ 3 dz = 2miRes ( f(2)e™, \/§z> - fcR ;267% dz, for large R. (1.132)
On one hand we have
12z
f(2)e?* = 9(2) where g(z) = =

2 —/3i’ z+/3i

By (1.117), it follows

Res( (2)e'?; \fz) = g(V/3i) = (1.133)

62\f
On the other hand we have

R

m7 on CR

[ f(2)] <
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Therefore (c¢) in Lemma 1.51 is fulfilled. By Jordan’s lemma and (1.133), we can take R — oo in (1.132) and
get

0 i2x R i2x
P.V.J 2 de=lim | S de = mie ™R,
e TP+ 3 R—w | pa?+3
Taking imaginary part above yields
P.V. foo %M dz = e 2V,
e TE4+3

By the even symmetry of the integrand above, it follows

0 . 2
J T sin xdx:

1672\/5.
o x2+3 2

Sect. 18.3. Type III. Integrals involving indented path. Let 0 < p < R. CF is the same as the previous
sections. Moreover we let ¢, be the upper-half circle | z| = p. Different from Cr, we let C, clockwisely oriented.
Now we denote by [, r the path starting from —R to —p along the real axis, then from —p to p along C,, then
from p to R along the real axis and finally from R back to —R along Cr. We refer [, p as a indented path. To
construct such contour is to avoid difficulty from singularity at 0. For example e*® / 2. This function does not

in general have definition at 0.

Example 4. Evaluate the Dirichlet’s integral

o0 .
ST
dz.
0 X

By Residue theorem and the indented path [, g, we have

iz —p iz iz R iz iz
J e—dz=f e—dz+J e—dz—i—J- e—dx—i—J £ dz=0. (1.134)
lpr z —R X Cp z p X Cr y4
Here the function ei* / z has no singularity in the region enclosed by I, r. Rewriting (1.134) yields
—p pix R iz iz iz
f e—dz—kf e—dx:—f e—dz—f S P (1.135)
_R T p T C, z Cr z

Notice that C), is clockwisely oriented. Hence we parameterize it by pet (™9 with 0 € [0, 7]. Therefore

i(m—0)

J e r e —pe' i df = fifr e e fempsind 4g, (1.136)
c, % o peim=0 0
Since for any z € D(0; 1), it holds
le* —1| < c|z], for some constant ¢ > 0.
Therefore for all p € (0, 1), it holds
}e—ipcose—psine 1| <ep.

By this estimate, it follows

J emipcostompsing g dQ' < J eTipcosbpmpsing g ‘dﬂ < cmp, for all p e (0,1).
0 0
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By the last estimate, we can take p — 0" and get

lim " e—ipcos 0€—psin0 do = .
p—0%t Jo
With this limit, we can take p — 07 in (1.136) and get

. (& .
lim —dz = —mi.
+
=07 Jo, %

With this limit, we have from (1.135) that
0 iz R iz iz
J e—dz-i-f e—dm:m'—f £ 4. (1.137)
_R T 0 X Crn %
Here we take p — 0 in (1.135). Moreover by Jordan’s lemma, one can easily show that
lim —dz =0.
R—0 Cr z
By this limit, we can take R — o0 in (1.137) and get
0 T
P.V.J £ dz=mi
o T
Taking imaginary part above and noticing the even symmetry of sin x / x on R, we have

© sinx T
dz=T.
f T

0 x

Example 5. Evaluate for —1 < a < 3 the integration:

o0 xa
—— duz.
L 212"
We let

Z(l

f(z):mv

3
where 2z is the power function defined in the branch —g < argz < g
With the contour /, r and residue theorem, it holds
(1.138)

—p 20 20 R La e ' .
L,Rf(") - LR (zumd”Lp (zul)zd”f M‘“*L 1y 47 = 2miRes (f(=):).

p

Here we have used the fact that ¢ is the only singularity of f(z) in the region enclosed by [, r, provided that p

is small and R is large.

(i). The function f can be rewritten as

g2 2t
f(Z)— (2—7;)2’ where g( )_ (Z+Z)2
Hence by (1.117), it holds
Res (f(z),z) _ g'(i) _ (a — 1)ia+1 _ a— 16ﬂ(a+1)i/2- (1139)




(ii). Letting z = —t with ¢ running from R to p, we then have
—p a P AT R _alog(—t)
f e 2dz=—J ) )thzf S dt.
_r(2+1) r (2 +1) , (2+1)

Using the branch of log-function, we calculate log(—t) = Int + iarg(—t) = In¢ + iw. Plugging this calculation
into the last equality yields

-p a R _alog(—t) ) R ta
f zidzzf eidt:e“”J T at (1.140)

_p (22+1)? p (2 +1)? p (2 +1)? '

(iii). Similarly we let z = ¢ with ¢ running from p to R. Then it holds

R a R a
J Zidz:J " (1.141)

, (22+1)2 , (2 +1)2
(iv). Now we let 2(0) = pe'("=9  where 0 runs from 0 to 7. By this parametrization, it follows
1‘,(7r—9)) 7 a(ln pt+i(r—0))

2 dz = —i T _entonlre T dp = —i ™9 dg
o, 2+ 1) 0 (erZi(n—0)+1)2p P o (p2e2i(m=0) 1 1)2 :

Reorganizing the above calculations yields

J La & — 7ip1+a JTF ela+1)i(r—0) "
c, (2 +1)° o (p?eHtr=0 +1)2

Taking p sufficiently small and applying triangle inequality, we get

2% 1va [ 1 ptta
Cp

o (1= p2)2 (1—p2)%
Since a + 1 > 0, the last estimate gives us

Z(l

p—0

(v). let 2(0) = Re?, where 0 runs from 0 to 7. By this parametrization, it follows

f Ea— dz—ifr e“lOLR@”) Re™ de—iRJW S e’ do
Cn (22+1)2 - 0 (R2€2w+1)2 - 0 (R262i9+1)2 :

Reorganizing the above calculations yields

f 2 qi= iRt JW T
on (4 1)2 o (RZ20 412

Taking R sufficiently large and applying triangle inequality, we get

a s 1 R1+a
f (wadz <R1+"J . df=n
Cr

o @12 T TR
Since a + 1 < 4, the last estimate gives us

. z®

Now we plug (1.139)-(1.141) to (1.138) and obtain

) a—1 ; z° 2%
iam 1 dt = 2mi —— Tr(a+1)z/2 _ J _° dz- J 4
(e + ) L iy 1 e ., (22 n 1)2 z o (22 n 1)2 z

R ta
(12 +1)2
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In light of (1.142)-(1.143), we can take p — 0 and R — o0 in the last equality and get
0 ta

. a—1 .
iam _ . 7r(a+1)z/2
(e + 1) L 7(752 e dt = 2mi — ¢ ,

which implies

dt = 271

—_ - = h 1.
o (2+1)? 4 erm+1 4 cos (a—ﬂ) ’ whena
2

foc o a—1 eﬂ(a+1)i/2 B 7'('(]. _ a)

For a = 1, this integral can be calculated directly by change of variable. In fact

©t B 1 Rd(?+1)

LA P | _  _dt=1lim - | T/

L (12 +1)2 Row Jy (2 +1)2 R 2 L (12 +1)2
R R

1 R 1

-1 = lim c—— = =
, Row21+ R 2

Ao 202 4 1)

= lim -
0 R— 2(t2 + 1)

Sect. 18.4 Integration Along a Branch Cut. The example in this section is to calculate the integral

o0 xfa,
f 1 dz, where 0 < a < 1. (1.144)
o T

When we complexify the integrand to the complex function

Zfa

PR (1.145)
we need to fix a branch cut. In this example we let 0 < argz < 2w. Therefore the branch cut is the positive
part of the real axis. Clearly the function in (1.145) is not analytic on any point of the branch cut. Therefore
when we construct contour, we have to avoid touching the branch cut. Now we fix a p > 0 sufficiently small
and fix a R > 0 sufficiently large. Fixing a 6y > 0 sufficiently small, we have two rays. One is denoted by [
which has argument 6y. Another ray is denoted by I which has argument —6y. I intersects with Cir(0; p) at
A and intersects with Cir(0; R) at B. Similarly [_ intersects with Cir(0;p) at C' and intersects with Cir(0; R)
at D. Now we construct our contour [. Starting from A, we follow [, to B. This part of contour is denoted by
l1. Then we go from B to D counter-clockwisely along the circle Cir(0; R). This part of contour is denoted by
lo. From D to C, we follow the [_. This part of contour is denoted by I3. Finally we go from C back to A by
clockwisely along Cir(0; p). This part of contour is denoted by l4. Therefore by residue theorem, it follows

—a —a —a —a —a —a
Jz dz=f Z—dz—i—f Z—dz+f Z—dz+f Y dz=2miRes—:—1). (1.146)
lZ+1 l]Z+1 122+1 l32+]‘ l4Z+1 Z+1

(i). By (1.117), it holds

z7® —a __ _—iamw

(ii). The parametrization for l; is re’® where r runs from p to R. Hence

,—a R e—alog(reieo) ) R ,—a(lnr+ifo) . R -a
J dz = J- — eodr = J — efodr = e1=a)i J ————dr. (1.148)
2 +1 , reo+1 p  reo+1 p reto+1
(iii). The parametrization for ls is Re™ where 6 runs from 6y to 2m — 6. Hence
Z—a 27 —0o e—a]og(Reie) ) 27 —0p e—a(ln R+z€) .
J dz =iR — e e dh = iR T e de.
lo Z+1 o Rel +1 0o Rel +1
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It then holds

—a 2n—0o _(1—a)if
f ‘ dz:uﬂﬂf L de.
Io z+1 0o Re? +1

Notice that a > 0. Therefore

—a 2m—0¢ 1 l1—a
J : dZ‘<R1aJ 7d9<27rR — 0, as R — oo.
Lzt o R—1 R-1

iv). The parametrization for I3 is re*(>7=%) where r runs from R to p. Hence
o
—a p ,—alog(ret?7—%))
f i dz = J A . (27 =00) 4y
1, 2+ 1 p ret@r=0) 41

—a

Jp efa(ln r+i(2w—00))

r reim—oo) 41 R ref@m—bo) 4 1

(v). The parametrization for l4 is pe’® where # runs from 27 — 6y to fy. Hence

,a 0o e—alog(peis) ) 0o e—a(lnp+if)
f dz :ipf T@’G do = ipJ Teze dé.
L ztl or—6, Pe’+1 or—p, pe’+1

It then holds

—a 0o (1—a)ib
f : dz:wkﬂf (2
L2+l 2m—g, PEY + 1

Notice that 1 — a > 0. Therefore

Z*(l
dz
‘L; z+1

Applying (1.147)-(1.151) to (1.146) and then taking p — 0, R — o0, we have

27‘(‘790 1 plfa
<p1*‘lf ——df < 2m — 0, as p — 0.
0o L—p 1—p

—a

o0 —a 0
o(1—a)iflo r dr + e(1—@)i(2m—00) r dr = 9ie—tom.
o refo 41 o Tetm=00) 41

Finally we take 8y — 0" above and get

0 —a

(1 - 6271—(17&)2') f " dr = 2mie”
o T + 1

am

which shows that

© pma m
dr = — .
o T+1 sin am

. ) P r
ez(27r790)d7, _ e(lfa)z(27r700) J dr.

(1.149)

(1.150)

(1.151)

Sect. 19. Definite Integral. The residue theorem can also help us to calculate definite integrals involving

sin and cos functions. In fact we consider the integral of the type

2
f F(sin@,cos ) d.

0
. — 1 .
If we let 2(0) = €' with 6 € [0, 27], then we have z(0) = 20 = e~ Tt can be easily calculated that
z
1 1
et 4 =it z(0) + 72(0) i0 _ ,—if 2(0) — 7z(9)
) — — inf — -
cos 5 5 , sin 6 % 5
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Plugging the above calculations into (1.152) yields

dé.

21 27
F(sin6,cosf) df = F
L (sin 6, cos 0) L % , 5

On the other hand we have 2'(6) = ie?® = iz(#). The above equality can be rewritten as

2m 21 2(0) T F
f F(sinf,cosf) df = J F z(@) ,
0 0 21

In light of the definition of contour integration, the last equality equivalently gives us

1 1
27 z—= z+ - 1
J F(sinf,cosf) df = J F = —2 | —dz. (1.153)
0 Cir(0;1) 2 2 1z

Here Cir(0;1) is counter-clockwisely oriented. For some typical F', the right-hand side above can be evaluated

by residue theorem.

Example 1. By (1.153), it holds

27
1 1 1 2
o l+asinf Cir(01) | 4 275 2 cir(o;1) 2% + (2i/a)z — 1
2

Here a is a real number between —1 and 1. The quadratic formula reveals that the denominator of the integrand

here has the pure imaginary zeros

(—14—\/1—&2), (—1—\/1—@2)_
2=—"];4 29=|—"7-—]1.
a a

So if f(z) denotes the integrand in the last integral of (1.154), then

2/a
flz) = .
) (z—21)(z — #2)
Notice that because |a| < 1,
1++/1—a?
|20| = ———— > L.
|al
Also, since |z122| = 1, it follows that |21 | < 1. Hence there are no singular points on Cir(0;1), and the only

singularity of f interior to Cir(0; 1) is the point z;. By residue theorem, it holds

2/a . 2/a 2
YA dz = 2mi = 5
cir(o;1) 22 + (2i/a)z — 1 Z1—%22 +l—a

Example 2. Now we consider for a € (—1,1) the integral

4 cos 20
— - dé.
fo 1—2acosf + a?

By property of cos function and (1.153), it holds

g 520 1 520 ' !
f cos 2d9:*f cos 2d9:£J Z5+ _d=.
o 1—2acosf+a 2Jo 1—2acosf+a 4 Jeirony (2 —a)(az — 1)z
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In this case z = a and z = 0 are singularities of the function
2 +1
(z —a)(az — 1)22

f(z) =

in D(0;1). Therefore it holds

2241 .
Lir(m) ey 4 — 271 (Res(/(2:0) + Res(/(2):a).
By (1.117),

2441 a? +1

Res(f(2);0) = [(ZCL)(M]I@ = —

Moreover
24 +1 a*+1

Res(f(2)0) = | s [0 = i

Therefore the above arguments all infer that

us 2 2 1 4 1 2
f cos 20 -7 (a + at + ) Ta

o 1—2acosf+a2 2\ a2 (- 1a?) 1-a®

Sect. 20. Argument Principle. In this section we assume [ is a smooth simply connected closed curve. )
is the simply connected region enclosed by I. We call f a meromorphic function in € if there are finitely many

points Pi, ..., Py in € so that f is analytic on

Q~ {Pl,...,PN}.

Moreover Py, ..., Py are poles of f with order nq, ..., ny, respectively. By Laurent series expansion, we have
_9i(®) .
f(z) = G- Py near each P;. (1.155)

Here for each j = 1,..., N, g; is analytic at P; with g;(P;) # 0. Function f may have finitely many zeros if f is
not a constant function. We denote by Z1, ..., Zps the M locations of zeros of f. We assume that 71, ..., Zs

are not on [. By Taylor expansion of f, we may assume
f(z) = (z—Z;)™ hj(z), near Z;. (1.156)

Here for each j = 1,..., M, h; is analytic at Z; with h;j(Z;) # 0. m; is a finite natural number. By multiple

connected version of Cauchy theorem, for € > 0 sufficiently small, it holds

flz) < f'(2) J f'(2)
Jz f(2) dz= Z JCir(ZJ;e) f(2) =t ,;1 JCir(Pk;e) f(2) dz

j=1

Here Cir(z;;¢€) and Cir(Py;€) are all counter-clockwisely oriented. Plugging (1.155)-(1.156) to the right-hand

side above yields

Jf@wzsz f@®+if HOI
l

f(Z) j=1 Cir(Zj;e) f(Z) k=1 JCir(Pg;e) f(Z)
_ & J m(z — Z;)™ " hy(2) + (2 — Z;)™ h(2) &
j:1 Cir(Zj;e) (’Z - Zj)m] hJ(Z)
N f —n(z = Po) () + (2= P) M g(2)
k—1 JCir(Py;e) (Z - Pk)inkgk(z)
M N M / N
1 1 hj(2) 95,(2)
=) m, dz — nkJ dz + f 2 dz + f kA2 4z,
; ! JCir(Zj;e) z = Zj ]; Cir(Pyse) # — Py ]; Cir(Z;;e) hj (Z) k;l Cir(Py;e) gk(z)
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It holds that

W, /
f ) dz = f 95(2) dz =0,
Cir(Zj;e) ]’L](Z) Cir(Py;e) gk(Z)

since h; and g are analytic near Z; and Py, respectively with h;(Z;) # 0, gi(Pk) # 0. Therefore the last two
equalities yield

THONNE I
Jl 702 dz = 27 (]Z:lmj kZ:lnk) .

Equivalently it follows

L (fE g, 4 p

2 ) 7o : (1.157)

where Z = Z;Vil m; is the number of zeros counting multiplicities. P = Zszl ny is the number of poles counting
multiplicities.

We can use a different way to calculate

f'(z)
dz.
fz f(2)
Let z(t) with ¢ € [a, b] be a parametrization of [, which induces counter-clockwise direction on I. Moreover
z(a) = z(b). (1.158)
By definition of contour integral, it holds
b b S ()
f'(2) J =) at’
dz = Z(t)dt = = dt. 1.159
oo =] o= e 1459

The last equality uses chain rule. Let T'(¢) = f(z2(¢)) with ¢t € [a,b]. Then T'(¢) is the parametrization of the
image of [ under the mapping f(z). (1.159) can then be reduced to

FE LT
ﬁﬂa“‘Lrw“'

By the definition of contour integral, it holds

b 1v

I (¢ 1

J ®) dt = J — dw, where T is the image of [ under the mapping f(2).
a F(t) rw

Then the last two equalities yield

/

1

f I dz = J. — dw, where T is the image of [ under the mapping f(z). (1.160)
1 f(2) rw

By (1.158), I is also a smooth closed curve in C. Since f does not vanish on [, the curve I' does not pass the

origin. Now we want to represent I'(¢) by polar coordinates as follows:
L(t) = f(2(t) = p(t)e'®D,  tefa,b]. (1.161)

Firstly p(¢) must be | f(z(t))] for all ¢ € [a,b]. Therefore it is a smooth function with respect to the variable
t € [a,b]. By (1.158), it also satisfies

pla) = 1f(z(a))[ = [f(z(0))] = p(b). (1.162)



Since argument function is multiple-valued, to decide the function ©(t) is tricky. Notice that ' is a smooth
curve in C without passing across the origin 0. We can separate the parameter space [a,b] into finitely many
small sub-intervals, denoted by I, := [t;j_1,t;], 7 = 1,..., K. The union of these sub-intervals equal to [a,b].

Moreover it holds tg = a and tx = b. We can choose
max{\tj 7tj_1| j = 1,,K}

to be small so that on each I;, the image of I'(¢) lies in a branch of a log-function. For points of I'(¢) with
t € I, we can firstly fix a log-function so that the image of I'(t) with ¢ € I are contained in the branch of this
log-function. This log-function is denoted by log;;. Now logpy z is analytic at all points on ['(t) with t € I4.
Therefore we can define

 logyy D(t) — (1)

©1(¢) ; , for t € I.

The value of ©1(¢) with ¢ € I lies in the branch of logp;j. Clearly this ©1(¢) is smooth on I;. Moreover by the
last equality it holds

L(t) = p(t)e®® tel.

Now we consider points on I5. As before we can also find a log-function, denoted by log, so that the image
of I'(t) with t € Iy are contained in the branch of log. But notice that at I'(¢;), the argument of I'(¢;) in the
branch of logy;; differs from the argument of I'(#1) in the branch of log by 2k7. That is

logy I'(t1) —logI'(t1) = 2kmi.

Therefore by letting logpy) z = log z + 2kmi, we not only can have the analyticity of logy) on points of I'(t) with

t € Is. Also we can have
logyg) I'(t1) = logpy; I'(th). (1.163)

Now we similarly define

logro1 I'(t) — In p(t
Os(t) = iz I z al )7 for t € I.

Clearly this O2(t) is smooth on I. By (1.163), it also holds
O2(t1) = O1(t1).

Inductively we can find a sequence of smooth angular functions, denoted by ©;(¢), on I;. Here j = 1,..., K.
Moreover for each j = 1,..., K —1, ©; satisfies ©;(t;) = ©;11(t;). In terms of these ©;, we define for all ¢ € [a, b]
an angular function ©(t) by

@(t) :@](t), lftEI]

Clearly this © is a continuous function on [a,b]. Moreover © is piece-wisely differentiable and satisfies (1.161).
The above arguments give us a way to continuously change argument from I'(a) to I'(b) along the curve I'. By
(1.158) and (1.161)-(1.162), we have

0i0(a) _ ,iO(b)

Due to periodicity of sin and cos functions, ©(a) and ©(b) may not equal to each other. Now we denote by
Ajargf(z) the difference ©(b) — ©(a). Clearly this difference must be 2kw for some integer k. Summarizing the

above arguments gives us

O(b) — O(a) = Ajargf(z) = 2kn. (1.164)
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By (1.161), it satisfies

1 b pl(t) e1O(t) + i@'(t)p(t) etO(t) b pl(t) ‘ b
JF Edw :L ()00 dt :L 0 dt +1 ) o' (t) dt.

By fundamental theorem of calculus, it holds

bp/(t) . . b / _ = K / _ < ) . — _
J (o = e) ~np(a) L@(t) dt_;lft“@(t) dt—;[@(tj) e(t],l)] — 0(b) - 6(a).

a

Hence (1.162) and (1.164) imply that

JF % dw = i[O(b) — O(a)| = iAargf(z). (1.165)

Combining this result with (1.160), we have

I'(z) =1Ajargf(z
jlf(Z) dz = iAjargf(z).

In light of this equality and (1.157), we get the so-called argument principle. That is

Theorem 1.52 (Argument Principle). Let [ denote a counter-clockwisely oriented smooth closed contour, and
suppose that

(a). a function f(z) is meromorphic in the domain enclosed by l;

(b). f(2) is analytic and non-zero on l;

(c). counting multiplicities, Z is the number of zeros and P is the number of poles of f(z) inside l.

Then
1
Q—Al argf(z)=Z — P. (1.166)
™

Example 1. The only zeros of the function

3
22 +2
z =
1) =2
are exterior to the circle |z| = 1, since they are the cubic roots of —2; and the only singularity in the finite

plane is a simple pole at the origin. Hence, if I denotes the circle |z| = 1 in the counter-clockwisely orientation,
(1.166) tells us that

Ajargf(z) = 2m(0 — 1) = —2m.

That is, T', the image of [ under the transformation f(z), winds around the origin once in the clockwise direction.

Sect. 21. Counting Zeros. In this section we apply argument principle introduced in Sect. 20 to count
number of zeros for analytic functions. Firstly we give Rouché’s theorem, which is a useful criterion to compare
number of zeros between two analytic functions.

Theorem 1.53 (Rouché’s theorem). Let I denote a simple closed contour, and suppose that

(a). two functions f(z) and g(z) are analytic in the domain enclosed by l;

(b). f(2) and g(z) are also analytic on l;

(c). |f(2)] >19(2)]| at each point on .

Then f(z) and f(2) + g(z) have the same number of zeros, counting multiplicities, on the region enclosed by l.
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Proof. By (c) in the hypothesis, we have | f(2)| > 0 on [. Therefore

0+ = 1) (55 +1), zel (L.167)

is well-defined for all points on I. Letting z(¢) with ¢ € [a, b] be a parametrization of [ which is counter-clockwisely

oriented, similarly to the arguments in Sect. 20, we can find

(p1(8):01(1),  (pa(t),02(t))  and  (ps(t),O3(t)),  tela,b]

so that

Fz0) = pr(0) D, F2(1) + g(2(1)) = pa(t) €',
Plugging the three equalities above into (1.167) yields
pa(t)e’®* M) = py (1) pa(t) e’ + O g e [a,b).

Here p; with j = 1,2,3 are smooth functions. ©; with j = 1,2,3 are continuous and piecewisely differentiable
functions. When ¢ runs from a to b, the argument of the left-hand side above changes from O(a) to O2(b).
Therefore the total change of argument equals to O2(b) — ©2(a). On the other hand, the argument of the
right-hand side above changes from 01 (a) + ©3(a) to ©1(b) + O3(b). The total change of argument equals also
to ©1(b) — ©1(a) + O3(b) — O3(a). Hence we get

Ajarg(f + g) = Ajargf + Ajarg (? + 1) . (1.168)

Still by (c) in the hypothesis, it holds

‘(9(2)+1>f1‘<1, zel

f(2)
Therefore the image of [ under the mapping ft((z)) + 1 is contained in the open disk D(1;1). The disk D(1;1) is
z
strictly on the right-half plane. So the image of [ under the mapping ch((z)) + 1 cannot wind around the origin
z
0. This shows that
Ajarg (g + 1) =0.
f
Plugging this result into (1.168) yields
Ajarg(f +g) = Ajargf.
The proof then follows by argument principle since now f + g and f have no poles. O

Example 1. In order to determine the number of roos, counting multiplicities, of the equation z* + 323 +6 = 0

inside the circle Cir(0;2), write
f(z2) =32 and g(2) = 2* +6.
Then observe that when |z| = 2,

1f(2)| =3|z]>=24 and |g(2)| <|z|*+6=22.
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The conditions in Rouché theorem are thus satisfied. Consequently, since f(z) has three zeros, counting multi-
plicities, inside Cir(0;2), so does f(z) + g(z). That is z* + 322 + 6 = 0 has three roots, counting multiplicities,
inside the circle Cir(0;2).

Example 2. Fundamental theorem of algebra. Suppose that P(z) = ag + a1z + ... + a2"™ (a, # 0)
is a polynomial of degree n (n = 1). Let f(z) = a,z™ and g(z) = P(z) — a,z™. Since g is of degree at most
n — 1, it holds

[f(2)] > 19(2)], for all z € Cir(0; R), provided that R is large enough.

By Rouché theorem, number of zeros of P(z) = f(z) + g(z) equals to the number of zeros of f(z) = a,2" in
D(0; R), provided that R is large enough. Therefore P(z) has n roots in C.

Example 3. In this last example we consider how many roots of the equation z* + 823 + 322 + 2z +2 = 0 lie in
the right-half plane. Firstly we check if there are roots on the pure imaginary line. To do so we assume z = it

with ¢ € R and plug z = it into P(z) = 2* + 82 + 322 + 2z + 2. By this way we have
P(it) = (t* = 3t> +2) +i (=8> + 2t),  teR. (1.169)
If P(it) = 0 for some t € R, then
=37 +2=-1)(t* -2) =0. (1.170)
Meanwhile
2t — 8t3 = 0. (1.171)

But (1.170)-(1.171) have no common roots. So P(z) has no root on pure imaginary line.

Let Cg be the right-half part of Cir(0; R). We can assume Cpg is counter-clockwisely oriented. When R is
large enough, there is no root of P(z) on Cg since by fundamental theorem of algebra, we have only 4 roots
for the polynomial P(z). Now we denote by Ir the contour constructed as follows. Firstly we go from —i R to
iR along Cr. Then we go from iR to —iR downwardly along the pure imaginary line. Clearly the previous
arguments imply that there is no root of P(z) on lg. To count the number of roots of P(z) on the right-half

plane, we just need to compute the total change of argument of the image of [g under the mapping P(z).

I. Change of argument on Cg. For Cg, we parameterize it by z(f) = Re', where 6 runs from —7/2 to 7/2.

Then we get

or P(2) _x/2 P(Re®) _nj2 R0 + 8R3¢30 4 3R2ei20 + 2Ret? + 2

P'(z) o, J’T/Q P'(Re”) 1 io; g — J’T/ P AR $ UR 4 6Re +2 (1.172)

Since the integrand of the last integral above satisfies

4R3e™0 + 24R%2% + 6Re'® + 2 i , ,
Riei10 § 8R3e0 + 312020 + 3Re & 2Re i — 4, as R — oo, uniformly for all § on [—7/2,7/2].

Then taking R — oo in (1.172) yields

P/
lim @) 4z — ami (1.173)

II. Change of argument on pure imaginary line. For the part of [z on the pure imaginary line, we

parameterize it by z(¢) = it with ¢ running from R to —R. In light of (1.169), the imaginary part of (1.169)
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equals to zero if and only if t =0, ¢ = 1/2 or t = —1/2. At these three values for ¢, the associated values of the
real part of (1.169) equal to 2, 21/16 and 21/16, respectively. In other words for ¢t € [—R, R], P(it) computed
in (1.169) can not take values on {x < 0}. Therefore the image of {it :te[-R, R]} under the mapping

P(z) is contained in the branch of principal log-function. It holds

2R — 8R3

-9 3
Arg (P(iR)) = arctan (R_?)R” R+ S8R )

) 5 AI’g (P(—ZR)) = arctan <R4—3R2—§—2

Therefore along the image of [ R, —i R] under the mapping P(z), the argument changes from

( 2R — SR? )
arctan | ——

R*—3R%2+2
to
aretan (2B 8RY
RY—3R2+2)°

Here [iR,—iR] is the directional line on the pure imaginary line starting from R to —iR. The total change of

argument equals to

_ 3
Afir,—irjargP(z) = 2arctan ( 2R+ 8R )

m — 0, as R — oo. (1174)

By (1.173), the total change of argument along the image of Cr under P(z) almost equals to 4. By (1.174),
the total change of argument along the image of [¢R, —iR] under P(z) almost equals to 0. Therefore the total
change of argument along the image of [p under P(z) must be 47, when R is large enough. By argument
principle it follows Z — P = 2. But P(z) has no poles, hence Z = 2. That is P(z) totally has 2 roots on the
right-half plane.
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